⑴ 铜合金材料的强化途径有哪些
像铜合金这样的无固态相变的金属材料,要想强化,有四种方法可行:细晶强化、固溶强化、加工硬化、热处理强化,其中热处理强化就是进行时效处理,这个是目前无固态相变的金属材料热处理强化的唯一方法。
⑵ 合金强化机制有哪些
合金钢的强化机制可分为固溶强化机制、界面强化、弥散强化、析出强化及细晶强化。其中固溶强化是钢最重要的强化手段,使合金固溶体的强度与硬度增加。
⑶ 铜合金有哪些强化方法
可以通过粉末冶金的方法加入弥散物,这个叫弥散强化。
或者在冶炼的时候采用第二项强化。
还有就是通过挤压等冷变形然后回火,这可以细化晶粒也有强化效果,不过再一遇高温就没用了。
个人认为粉末冶金弥散质点强化效果最好。
⑷ 提高高温合金性能的途径和方法有哪些
途径是:固溶强化 加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。 沉淀强化 通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。γ’相的强化效应可通过以下途径得到加强: ①增加γ‘相的数量; ②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应; ③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能 高温合金 高温合金 力; ④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。
⑸ 金属材料常用的强化方式及机理是什么
金属材料常用的强化方式有细晶强化、固溶强化、第二相强化、加工硬化。
1 细晶强化
通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,工业上将通过细 化晶粒以提高材料强度。
其原理是通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目 来表示,数目越多,晶粒越细。
二.固溶强化
合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高 的现象。
原理:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力, 使滑移难以进行,从而使合金固溶体的强度与硬度增加。
三.第二相强化
复相合金与单相合金相比,除基体相以外,还有第二相得存在。当第二相以细小 弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。
原理:它们与位错间的交互作用,阻碍了位错 运动,提高了合金的变形抗力。 对于位错的运动来说,合金所含的第二相有以下两种情况:
1、不可变形微粒的强化作用。
2、可变形微粒的强化作用。 弥散强化和沉淀强化均属于第二相强化的特殊情形。
四.加工硬化
随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、 韧性有所下降。
原理:金属在塑性变形时,晶粒发生滑移,出 现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。
(5)如何强化合金扩展阅读:
金属材料通常分为黑色金属、有色金属和特种金属材料。
①黑色金属又称钢铁材料,包括杂质总含量<0.2%及含碳量不超过0.0218%的工业纯铁,含碳0.0218%~2.11%的钢,含碳大于 2.11%的铸铁。广义的黑色金属还包括铬、锰及其合金。
②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等,有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。
金属材料的疲劳现象,按条件不同可分为下列几种:
⑴高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。
⑵低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
⑶热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。
⑷腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。
⑸接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
⑹ 铜合金有哪几种强化方法,并简述每种强化方法的作用机制
钨铜合金是钨和铜组成的合金。常用合金的含铜量为10%~50%。合金用粉末冶金方法制取,具有很好的导电导热性,较好的高温强度和一定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸发,大量吸收热量,降低材料表面温度。所以这类材料也称为金属发汗材料。
钨铜复合材料是以钨、铜元素为主组成的一种两相结构假合金,是金属基复合材料.由于金属铜和钨物性差异较大,因此不能采用熔铸法进行生产,一般采用粉末合金技术进行生产。
钨铜合金有较广泛的用途,其中一大部分应用于航天、、电子、电力、冶金、机械、体育器材等行业。其次也要用来制造抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电加工的电极、高温模具以及其他要求导电导热性能和高温使用的场合。
⑺ 综述合金材料都有哪些强化方法和机制,它们在本质上有何异同
看看这些符合标准不?
相同点:都是位错运动受阻,增加了位满运动的阻力,使得材料得到强化。
不同点:
①加工硬化:位错塞积、位错阻力和形成割阶消耗外力所做的功为其可能机制;
②细晶强化:增加了晶界,增加了位错塞积的范围;
③固溶强化:溶质原子沿位错聚集并钉扎位错;
④第二相强化:分散的强化粒迫使位错切过绕过强化相颗粒而额外做功都是分散相强化的位错机制。
⑻ 金属强化的强化的途径
金属材料的强化途径不外两个,一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。可惜当晶须的直径较大时(如大于5μm),强度会急剧下降。有人解释为大直径晶须在生长过程中引入了可动位错,一旦有可动位错存在,强度就急剧下降了。从自前来看,只有少数几种晶须作为结构材料得到了应用。另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高金属强度。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的。材料经过辐照后,也会产生强化效应,但一般不把它作为强化手段。 结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括:
1) 细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。
2) 提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态 金属的性能。夹杂物对金属材料的性能有很大的影响。在损坏的构件中,常可发现有大量的夹杂物。采用真空冶炼等方法,可以获得高纯度的金属材料。 金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后
位错运动的阻力增加所致。 合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化.
相变强化可以分为两类:
1) 沉淀强化(或称弥散强化)。在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。
在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。一是立方晶系,如TiC、V4C3,NbC等,二是六方晶系,如M02、W2C、WC等,三是正菱形,如Fe3C。对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。
2) 马氏体强化。金属材料经过淬火和随后回火的热处理工艺后,可获得马氏体组织,使材料强化。但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。 晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻
碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得多,晶界强度显著降低。因此强化晶界对提高钢的热强性是很有效的。
硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。 在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,
以充分发挥强化能力。例如:
1)固溶强化十形变强化,常用于固溶体系合金的强化。
2)结晶强化+沉淀强化,用于铸件强化。
3)马氏体强化+表面形变强化。对一些承受疲劳载荷的构件,常在调质处理后再进行喷
丸或滚压处理。
4)固溶强化+沉淀强化。对于高温承压元件常采用这种方法,以提高材料的高温性能。
有时还采用硼的强化晶界作用,进一步提高材料的高温强度。
⑼ 合金强化的主要机制有哪些
你这个问题太大了,首先合金的种类有许多,比如铁基合金,铝合金,钛合金,镍基合金,镁合金…………,各种合金的强化机制各异,比如有沉淀强化,时效析出强化,固溶强化,弥散强化……。如果你确实需要了解这方面的知识,最好阅读各种合金材料相关的书籍吧。
⑽ 如何增加铝合金表面硬度 如何增加硬度
摘要 1.加工强化