A. 铜系形状记忆合金主要用途是什么
铜—锌—铝形状记忆合金这种形状记忆合金,由于加工性特别是热加工性能好,可加工成丝、管、板,以及复杂形状的各种制品。
铜系形状记忆合金多用于制作单向记忆元件,即将它先制成一定的形状,接着在菱形晶格状态下进行变形加工,然后加热就可恢复原形。
B. 形状记忆合金有哪些应用
形状记忆合金(Shape Memory Alloys,简称SMA)是一种能够在温度和应力作用下发生相变的新型功能材料,具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、医疗器械、机械电器等领域。
1、汽车:形状记忆合金在汽车上应用最多的是制动器,目前使用品类已达一百多种,主要用于控制引擎、传送、悬吊等,以提高安全性、可靠性及舒适性。此外在汽车手动传动系统的防噪装置以及发动机燃料气体控制装置上也有应用。
来源:《揭秘未来100大潜力新材料(2019年版)》_新材料在线
C. 什么是形状记忆效应常用的形状记忆合金有哪些
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具有百万次以上的恢复功能,因此叫做"记忆合金"。当然它不可能像人类大脑思维记忆,更准确地说应该称之为"记忆形状的合金"。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。科学家们现在已经发现了几十种不同记忆功能的合金,比如钛-镍合金,金-镉合金,铜-锌合金等。形状记忆合金可以分为三种:单程记忆效应形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。双程记忆效应某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。全程记忆效应加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。三种记忆效应如下图所示。目前已开发成功的形状记忆合金有TiNi基形状记忆合金、铜基形状记忆合金、铁基形状记忆合金等。最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的记忆合金肋骨骨折接骨板。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。编辑本段形状记忆合金的具体应用工业应用(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。但这类应用记忆衰减快、可靠性差,不常用。(4)超弹性的应用。如弹簧、接线柱、眼镜架等。记忆合金材料镜架以记忆合金制成的弹簧为例,把这种弹簧放在热水中,弹簧的长度立即伸长,再放到冷水中,它会立即恢复原状。利用形状记忆合金弹簧可以控制浴室水管的水温,在热水温度过高时通过"记忆"功能,调节或关闭供水管道,避免烫伤。也可以制作成消防报警装置及电器设备的保安装置。当发生火灾时,记忆合金制成的弹簧发生形变,启动消防报警装置,达到报警的目的。还可以把用记忆合金制成的弹簧放在暖气的阀门内,用以保持暖房的温度,当温度过低或过高时,自动开启或关闭暖气的阀门。作为一类新兴的功能材料,记忆合金的很多新用途正不断被开发,例如用记忆合金制作的眼镜架,如果不小心被碰弯曲了,只要将其放在热水中加热,就可以恢复原状。不久的将来,汽车的外壳也可以用记忆合金制作。如果不小心碰瘪了,只要用电吹风加加温就可恢复原状,既省钱又省力,很是方便。管道结合和自动化控制方面记忆合金已用于管道结合和自动化控制方面,用记忆合金制成套管可以代替焊接,方法是在低温时将管端内全扩大约4%,装配时套接一起,一经加热,套管收缩
D. 记忆金属应用有哪些
弹簧大家都见过吧,生活中很多物品都需要用到弹簧,它可以被无数次的拉伸和收缩,收缩再拉伸。弹簧之所以可以做到这样,是因为它是由一种有记忆力的智能金属制作而成的。这种有记忆力的智能金属就是我们今天要讲的记忆金属。记忆金属也叫做形状记忆合金,它是一种比较特别的金属条,很容易被弯曲,塑性相当高。下面我们去看一下记忆金属的应用有哪些?
工业应用:
(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。
(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。
(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。但这类应用记忆衰减快、可靠性差,不常用。
(4)超弹性的应用。如弹簧、接线柱、眼镜架等。
医学应用:
TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、避孕器、心脏修补元件、人造肾脏用微型泵等。
高科技应用展望:
20世纪是机电学的时代。传感——集成电路——驱动是最典型的机械电子控制系统,但复杂而庞大。形状记忆材料兼有传感和驱动的双重功能,可以实现控制系统的微型化和智能化,如全息机器人、毫米级超微型机械手等。21世纪将成为材料电子学的时代。形状记忆合金的机器人的动作除温度外不受任何环境条件的影响,可望在反应堆、加速器、太空实验室等高技术领域大显身手。
其他应用:
1、钛镍形状记忆合金下尿路扩展支架
2、记忆合金食道支架
3、记忆合金作为防伪材料的应用
4、医用高强度记忆合金矫形棒
5、一种记忆合金薄壁管内支架
6、网格状记忆合金超弹性文胸托杯
7、记忆合金人体椎体
8、记忆合金防伪标志
9、单侧骨皮质记忆合金钉
10、一种记忆合金易拆卸环抱式加压接骨器
11、记忆合金无声脉动电机
12、记忆合金脊柱棒
13、形状记忆合金温控器
14、灭火器用记忆合金弹簧收缩式感温驱动装置
以上就是对记忆金属的应用作出的详细介绍。记忆金属在特定的温度条件下可以改变外形,人们正是利用它的这种特性研究制造出了很多有用的东西,使生活的各方面更加快捷方便。目前来说,记忆金属合金有几十种,它们在航空航天、工业、农业、军事、医疗等各个领域都发挥着极大的作用,而且发展前途十分可观。
E. 什么是铁系形状记忆合金
铁系形状记忆合金中的典型代表是铁—锰—硅形状记忆合金。这种记忆合金的锰和硅的含量对它的形状记忆性能影响很大。当合金中含锰28%~32%、含硅6%时,铁—锰—硅形状记忆合金可获得最佳的形状记忆特性。
铁系形状记忆合金与镍钛形状记忆合金、铜系形状记忆合金不同之处在于,它的成分简单,容易制造,可直接利用现有的钢铁工艺进行冶炼和加工,很适合用作结构材料,并可在高温场合下使用,是一种很有发展前途的廉价形状记忆合金。
F. 记忆金属有哪些
一般金属材料受到外力作用后,首先发生弹性变形,达到屈服点,就产生塑性变形,应力消除后留下永久变形。但有些材料,在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状,这种现象叫做形状记忆效应(SME)。具有形状记忆效应的金属一般是两种以上金属元素组成的合金,称为形状记忆合金(SMA)。
形状记忆合金可以分为三种:
(1)单程记忆效应
形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
(2)双程记忆效应
某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
(3)全程记忆效应
加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
三种记忆效应如下图所示。
目前已开发成功的形状记忆合金有TiNi基形状记忆合金、铜基形状记忆合金、铁基形状记忆合金等。
最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。
形状记忆合金的具体应用如下。
工业应用:
(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。
(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。
(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。但这类应用记忆衰减快、可靠性差,不常用。
(4)超弹性的应用。如弹簧、接线柱、眼镜架等。
医学应用:
TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、避孕器、心脏修补元件、人造肾脏用微型泵等。
高科技应用展望:
20世纪是机电学的时代。传感——集成电路——驱动是最典型的机械电子控制系统,但复杂而庞大。形状记忆材料兼有传感和驱动的双重功能,可以实现控制系统的微型化和智能化,如全息机器人、毫米级超微型机械手等。21世纪将成为材料电子学的时代。形状记忆合金的机器人的动作除温度外不受任何环境条件的影响,可望在反应堆、加速器、太空实验室等高技术领域大显身手。
记忆合金 谈到合金,当然要讲最有趣的合金--记忆合金。金属具有记忆,是一个偶然的发现:60年代初,美国海军的一个研究小组从仓库领来一些镍钛合金丝做实验,他们发现这些合金丝弯弯曲曲,使用起来很不方便,于是就把这些合金丝一根根拉直。在试验过程中,奇怪的现象发生了,他们发现,当温度升到一定的数值时,这些已经拉直的镍钛合金丝突然又恢复到原来的弯曲状态,他们是善于观察的有心人,又反复做了多次试验,结果证实了这些细丝确实具?"记忆"。
美国海军研究所的这一发现,引起了科学界的极大兴趣,大量科学家对此进行了深入的研究。发现铜锌合金、铜铝镍合金、铜钼镍合金、铜金锌合金等也都具有这种奇特的本领。人们可以在一定的范围内,根据需要改变这些合金的形状,到了某一特定的温度,它们就自动恢复到自己原来的形状,而且这“改变--恢复”可以多次重复进行,不管怎么改变,它们总是能记忆自己当时的形状,到了这一温度,就丝毫不差地原形再现。人们把这种现象叫作形状记忆效应,把具有这种形状记忆效应的金属叫作形状记忆合金,简称记忆合金。
为什么这些合金能具有这种形状记忆效应?它们是怎样记住自己的原形?用一般金属键理论、自由电子理论是难以解释合金的这种记忆效应的。记忆合金在一定的温度条件下能回复到原形,为核外电子的运动--随温度变化的运动,提供了绝佳的例证。
正是由于合金的形成是在高温条件下液态金属的互熔,由于液态金属的结构元排异,导致了这种元素的结构元与另一种金属的结构元相互均布,凝固后,其微观结构是不同种类的结构元成比例的有序排列,电磁力是构成合金物体的主要内聚力。
电磁力是由价和电子的运转所形成,而电子的运转速率随温度条件而变化的,所以,物体内的电磁力(大小、方向、作用点)也是随温度条件而变化。由此导致了金属物体的内力随温度条件而变化,只是这些变化在小温差范围内不明显,只有在较大温度变化(几百摄氏度)时才有表现。
一般金属在受力后,能产生塑性变形,如一根铁丝被折弯了,在折弯部位,电磁力受到外力的干扰,导致产生电磁力的价和电子的运转平面作出微量调整,一次塑性变形就完成了。
记忆合金由于是不同种类的结构元相互掺和均布,尽管结构元的个子、电磁力的大小不同,但各自都加快了自身的价和运转,在一定的温度条件下相邻相安。在受到外力后,电磁力受到外力的干扰,价和电子的运转平面作出微量角度调整,物体产生塑性变形,在此塑性变形中,部分调整后的价和电子的运转是不舒展的。当温度条件变化时价和电子的速率随之变化,当温度回复到相安舒展的(转变温度)条件时,不舒展的价和电子的运转立即回复到当时的速率,电磁力随之发生变化,使相邻结构元的价和运转也都作出相应的调整,全部回复到原来的舒展状态,于是整个物体也都回复到了原来的状态。这就是记忆合金的记忆过程。
其实,金属的记忆早就被发现:把一根直铁丝弯成直角(90° ),一松开,它就要回复一点,形成大于90° 的角度。把一根弯铁丝调直,必须把它折到超过180°后再松开,这样它就能正好回复到直线状态,这就是中国成语中所讲的矫枉过正。还有记忆力更好的合金就是弹簧,(这里所说的是钢制弹簧,钢是铁碳合金)弹簧牢牢地记住了自己的形状,外力一撤除,马上回复到自己的原来的样子,只是弹簧的记忆温度很宽,不像记忆合金这样有一个特定的转变温度,从而有了一些特别的功用。
利用记忆合金在特定温度下的形变功能,可以制作多种温控器件,可以制作温控电路、温控阀门,温控的管道连接。人们已经利用记忆合金制作了自动的消防龙头--失火温度升高,记忆合金变形,使阀门开启,喷水救火。制作了机械零件的连接、管道的连接,飞机的空中加油的接口处就是利用了记忆合金--两机油管套结后,利用电加热改变温度,接口处记忆合金变形,使接口紧密滴水(油)不漏。制作了宇宙空间站的面积几百平米的自展天线--先在地面上制成大面积的抛物线形或平面天线,折叠成一团,用飞船带到太空,温度转变,自展成原来的大面积和形状。
记忆合金目前已发展到几十种,在航空、军事、工业、农业、医疗等领域有着用途,而且发展趋势十分可观,它将大展宏图、造福于人类。
G. 新型金属材料有哪些
目前,市场上已经存在的新型金属材料主要有:
一、形状记忆合金:
形状记忆合金是一种新的功能金属材料,用这种合金做成的金属丝,即使将它揉成一团,但只要达到某个温度,它便能在瞬间恢复原来的形状。
形状记忆合金
二、储氢合金:
一种新型合金,一定条件下能吸收氢气,一定条件能放出 氢气:循环寿命生能优异,并可被用于大型电池,尤其是电动车辆、混合动力电动车辆、高功率应用等等。 目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,称为储氢合金
三、纳米金属材料:
纳米金属材料的开发对金属材料进行严重塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1微 米)尺度从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角 晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移主导的晶粒粗化相平衡,其实质是超细晶结构的稳定性随晶粒尺寸减小而降低所致。
四、金属间化合物:
钢中的过渡族金属元素之间形成一系列金属间化合物,即是指金属与金属、金属与准金属形成的化合物。其中最主要的有σ相和Loves相,它们都属于拓扑密排 (TcP)相,它们由原子半径小的一种原子构成密堆层,其中镶嵌有原子半径大的一种原子,这是一种高度密堆的结构。它们的形成除了原子尺寸因素起作用外,也受电子浓度因素的影响。合金元素对钢的临界点、钢在加热和冷却过程中的转变都有着强烈的影响。钢中加入合金元素经过热处理来影响钢中的转变,改变钢的组织,以得到不同的性能。
金属间化合物
五、非晶态金属:
非晶态金属是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为“玻璃态”,所以非晶态金属又称为“金属玻璃”或“玻璃态金属”。
H. 形状记忆合金是什么有哪些特点
形状记忆合金是由两种以上化学元素组成的原料。形状记忆合金是现阶段形状记忆原材料中形状记忆特性最好是的原材料。到迄今为止,大家早已发觉了50多种多样具备形状记忆效用的铝合金。航天航空行业的运用有很多取得成功的事例。航天器上极大的无线天线可以用记忆合金制成。在发送航天器以前,将抛物面天线伸缩放进通讯卫星中,火箭升空将航天器送至预订路轨后,只需加温。伸缩的卫星锅因为具备记忆力作用,当然进行,修复抛物面形状。
形状记忆合金的另一个关键特性是伪延展性(也称之为超延展性,superelasticity),主要表现为在外面力的作用下,形状记忆合金比一般金属材料具备更高的形变恢复力,即载入全过程中造成的大应变力会伴随着卸载掉而修复。这类特性广泛运用于医药学、工程建筑避震和日常日常生活。比如,前边提及的人工合成人体骨骼、伤骨固定不动充压器、口腔科矫正器等。与一般原材料相比,形状记忆合金制造的眼镜框可以承受较大的变形,而不会破坏(不适用形状记忆效用,只是在变形后温度修复)。
你还知道形状记忆合金的哪些知识呢?欢迎在评论区留言~
I. 什么是形状记忆合金
金和镉的合金有着特殊的“能耐”:当对它加热时,它像弹簧一样可以拉长或扭曲;冷却时,它保持着拉长或扭曲的形状;当再次加热时,它又恢复到拉长或扭曲前的形状。于是,人们就把这种材料叫做形状记忆材料或形状记忆合金。
在日本的儿童商店里畅销一种叫做“顽童入浴”的智力玩具,就是利用形状记忆材料制成的。当你将那个垂头丧气、手脚卷缩的玩偶置于温水中后,它立刻会头发直竖,手脚伸展,显露出一副欣喜若狂的样子;若将它从温水中取出,它就又恢复了原来的模样。
大家知道,当给普通金属施加外力或加热使它产生较大的变形(即超过弹性范围的塑性变形)后,若取消外力或者改变温度,金属通常是不会恢复原形的。但是形状记忆合金经过一定的塑性变形后,能在一定条件下(如再加热)自动恢复其原来的形状。这就是形状记忆合金不同于一般金属材料的独特之处。