导航:首页 > 焊接工艺 > 水下焊接过程中氢气是如何产生

水下焊接过程中氢气是如何产生

发布时间:2024-04-01 22:14:02

① 海底管道的焊接工艺

1、 在水中进行的焊接。这种焊接最初应用于海难救捞和舰船水线以下部位的应急抢修。20世纪60年代以后,由于海洋石油开采,需要兴建海底油库、敷设输油管道,组装采油平台等,水下焊接技术得到发展(见彩图[水下焊接])。水下焊可分为湿法焊、干法焊和局部干法焊3类。
2、 湿法焊 直接在水中进行焊接。主要采用手工电弧焊。水下焊焊条药皮外表涂防水层,在熔化过程中放出大量气体排开焊接电弧周围的水使焊接过程稳定。水下电弧气氛中含氢量高,水对焊接接头的冷却作用剧烈,接头容易产生硬脆现象和氢裂。在一般情况下接头强度和塑性分别约为陆上焊接时的80%和50%,只适用于水中非受力金属结构件的安装、维修和应急修补。
3、干法焊 把焊接部位和焊工密封在一个排除水的压力舱内,在气相环境中进行焊接。干法焊接分为高压干法焊接和大气压干法焊接。主要使用手工电弧焊、钨极惰性气体保护电弧焊。接头性能可与陆地焊接接头性能相等。水下干法焊因设备复杂、造价昂贵、并受工件形状和尺寸限制,一般只限于高质量构件的焊接。
4、局部干法焊 主要采用气体保护半自动焊,在焊接部位进行排水,造成一个局部气相区,使焊接过程稳定(见图[局部干法水下焊])。局部干法焊接的接头质量优于湿法焊接,且不需要大型设施,适应性也较强。

② 水下气割和水下电焊的原理是什么

介绍:水下焊接水下焊接与切割是水下工程结构的安装、维修施工中不可缺少的重要工艺手段。它们常被用于海上救捞、海洋能源、海洋采矿等海洋工程和大型水下设施的施工过程中。水下焊接方法

[编辑本段]

水下焊接有干法、湿法和局部干法三种。

(一)干法焊接

这是采用大型气室罩住焊件、焊工在气室内施焊的方法,由于是在干燥气相中焊接,其安全性较好。在深度超过空气的潜入范围时,由于增加了空气环境中局部氧气的压力,容易产生火星。因此应在气室内使用惰性或半惰性气体。干法焊接时,焊工应穿戴特制防火、耐高温的防护服。

与湿法和局部干法焊接相比,干法焊接安全性最好,但便用局限性很大,应用不普遍。

(二)局部干法焊接

局部干法是焊工在水中施焊,但人为地将焊接区周围的水排开的水下焊接方法,其安全措施与湿法相似。

由于局部干法还处于研究之中,因此使用尚不普遍。.320-

(三)湿法焊接

湿法焊接是焊工在水下直接施焊,而不是人为地将焊接区周围的水排开的水下焊接方法。

电弧在水下燃烧与埋弧焊相似,是在气泡中燃烧的。焊条燃烧时焊条上的涂料形成套筒使气泡稳定存在,因而使电弧稳定,如图8-1所示。要使焊条在水下稳定燃烧,必须在焊条芯上涂一层一定厚度的涂药,并用石蜡或其他防水物质浸渍的方法,使焊条具有防水性。气泡由氢、氧、水蒸气和由焊条药皮燃烧产生的气泡;浑浊的烟雾生的其他氧化物。为克服水的

冷却和压力作用造成的引弧及稳弧困难,其引弧电压要高于大气中的引弧电压,其电流较大气中焊接电流大15%~20%。

水下湿法焊接与干法和局部干法焊接相比,应用最多,但安全性最差。由于水具有导电性,因此防触电成为湿法焊接的主要安全伺题之一。水下焊接与切割的事故原因

[编辑本段]水下焊接与切割的致险因素的特点是:电弧或气体火焰在水下使用,它与在大气中焊接或一般的潜水作业相比,具有更大的危险性。

水下焊接与切割作业常见事故有:触电、爆炸、烧伤、烫伤、溺水、砸伤、潜水病或窒息伤亡。事故原因大致有以下几点:

(1>沉到水下的船或其他物件中常有弹药、燃料容器和化学危险品,焊割前未查明情况贸然作业,在焊割过程中就会发生爆炸。

(2)由于回火和炽热金属熔滴烧伤、烫伤操作者,或烧坏供气管、潜水服等潜水装具而造成事故。

(3)由于绝缘损坏或操作不当引起触电。

(4)水下构件倒塌发生砸伤、压伤、挤伤甚至死亡事故。

(5)由于供气管、潜水服烧坏,触电或海上风浪等引起溺水事故。

水下焊接与切割安全措施

[编辑本段]

(一)准备工作

水下焊接与切割安全工作的一个重要特点是:有大量、多方面的准备工作,一般包括下述几个方面:

(1)调查作业区气象、水深、水温、流速等环境情况。当水面风力小于6级、作业点水流流速小于0.1^}0.3m/s时,方可进行作业。

(2)水下焊割前应查明被焊割件的性质和结构特点,弄清作业对象内是否存有易燃、易爆和有毒物质。对可能坠落、倒塌物体要适当固定,尤其水下切割时应特别注意,防止砸伤或损伤供气管及电缆。

<3)下潜前,在水上,应对焊、割设备及工具、潜水装具,供气管和电缆、通讯联络工具等的绝缘、水密、工艺性能进行检查试验。氧气胶管要用1.5倍工作压力的蒸汽或热水清洗,胶管内外不得粘附油脂。气管与电缆应每隔.5m捆扎牢固,以免相互绞缠。入水下潜后,应及时整理好供气管、电缆和信号绳等,使其处于安全位置,以免损坏。

(4)在作业点上方,半径相当于水深的区域内,不得同时进行其它作业。因水下操作过程中会有未燃尽气体或有毒气体逸出并上浮至水面,水上人员应有防火准备措施,并应将供气泵置于上风处,以防着火或水下人员吸入有毒气体中毒。

(5)操作前,操作人员应对作业地点进行安全处理,移去周围的障碍物。水下焊割不得悬浮在水中作业,应事先安装操作平台,或在物件上选择安全的操作位置,避免使自身、潜水装具、供气管和电缆等处于熔渣喷溅或流动范围内。

(6)潜水焊割人员与水面支持人员之间要有通讯装置,当一切准备工作就绪,在取得支持人员同意后,焊割人员方可开始作业。

(7)从事水下焊接与切割工作,必须由经过专门培训并持有此类工作许可证的人员进行。

防火防爆安全措施

[编辑本段](1)对储油罐、油管、储气罐和密闭容器等进行水下焊割时,必须遵守燃料容器焊补的安全技术要求。其他物件在焊割前也要彻底检查,并清除内部的可燃易爆物质。

(2)要慎重考虑切割位置和方向,最好先从距离水面最近的部位着手,向下割。这是由于水下切割是利用氧气与氢气或石油气燃烧火焰进行的,在水下很难调整好它们之间的比例。有未完全燃烧的剩余气体逸出水面,遇到阻碍就会在金属构件内积聚形成可燃气穴。凡在水下进行立割,均应从上向下移,避免火焰经过未燃气体聚集处,引起燃爆。

(3)严禁利用油管、船体、缆索和海水作为电焊机回路的导电体。

(4)在水下操作时,如焊工不慎跌倒或气瓶用完更换新瓶时,常因供气压力低于割炬所处的水压力而失去平衡,这时极易发生

回火。因此,除了在供气总管处安装回火防止器外,还应在割炬柄与供气管之间安装防爆阀。防爆阀由逆止阀与火焰消除器组成,前者阻止可燃气的回流,以免在气管内形成爆炸性混合气,后者能防止火焰流过逆止阀时,引燃气管中的可燃气。

换气瓶时,如不能保证压力不变,应将割炬熄灭,换好后再点燃,或将割炬送出水面,等气瓶换好后再送下水。

(5)使用氢气作为燃气时,应特别注意防爆、防泄漏。

(6)割炬点火可以在水上点燃带入水下,或带点火器在水下点火,前者带火下沉时,特别在越过障碍时,一不留神有被火焰烧伤或烧坏潜水装具的危险,在水下点火易发生回火和未燃气体数量增多,同样有爆炸的危险,应引起注意。

(7)防止高温熔滴落进潜水服的折迭处或供气管,尽量避免仰焊和仰割,烧坏潜水服或供气管。

(8)不要将气割用软管夹在腋下或两腿之间,防止万一因回火爆炸、击穿或烧坏潜水服,割炬不要放在泥土上,防止堵塞,每日工作完用清水冲洗割炬并凉干。

防触电安全措施

[编辑本段](1)焊接电源须用直流电,禁用交流电。因为在相同电压下通过潜水员身体的交流电流大于直流电流。并且与直流电相比,交流电稳弧性差,易造成较大飞溅,增加烧损潜水装具的危险。

(2)所有设备、工具要有良好的绝缘和防水性能,绝缘电阻不得小于1M。。为了防海水、大气盐雾的腐蚀,需包敷具有可靠水密的绝缘护套,且应有良好的接地。

(3)焊工要穿不透水的潜水服,戴干燥的橡皮手套,用橡皮包裹潜水头盔下领部的金属钮扣。潜水盔上的滤光镜铰接在盔外面,可以开合,滤光镜涂色深度应较陆地上为浅。水下装具的所有金属部件,均应采取防水绝缘保护措施,以防被电解腐蚀或出现电火花。

(4)更换焊条时,必须先发出拉闸信号,断电后才能去掉残余的焊条头,换新焊条,或安装自动开关箱。焊条应彻底绝缘和防水,只在形成电弧的端面保证电接触。

(5)焊工工作时,电流一旦接通,切勿背向工件的接地点、把自己置于工作点与接地点之间,而应面向接地点,把工作点置于自己与接地点之间,这样才可避免潜水盔与金属用具受到电解作用而致损坏。焊工切忌把电极尖端指向自己的潜水盔,任何时候都要注意不可使身体或工具的任何部分成为电路。

③ 湿法水下焊接时使用的可燃气体是什么

湿法水下焊接时使用的可燃气体是氢氧混合气体,氢氧被加热至自燃温度时会燃烧。按2:1摩尔比例混合的氢氧混合气的自燃温度是570°C(1065°F)。当燃烧时,混合气释放能量,而且会转变成水蒸气,令反应能继续进行。每摩尔的H2释放出241.8千焦耳(低热值)。
氢氧是氢气(H2)和氧气(O2)按2:1摩尔比例混合的混合物,这个比例和水中氢和氧的比例相同。这气体混合物是用于制作耐火材料的火炬上,而且是最初用作焊接的气体混合物。在实际操作中需要用4:1或5:1的氢氧比例,以免产生氧化焰。氢氧气是氢氧机用软水经过电解后,变成氢气与氧气混合的混合燃料气,它仅使用软水、或添加降温液(国内称NO.6溶剂)及少许的电能即可产生氢氧气,开发的主要目的是取代使用的乙炔气及丙烷气。

④ 在水下用什么来焊接

水下焊接由于水的存在,使焊接过程变得更加复杂,并且会出现各种各样陆地焊接所未遇到的问题,目前,世界各国正在应用和研究的水下焊接方法种类繁多,应用较成熟的是电弧焊。随着水下焊接技术的发展,除了常用的湿法水下焊接、局部干法水下焊接和干法水下焊接以外,又出现了一些新的水下焊接方法。但是,从各国海洋开发的前景来看,水下焊接的研究远远不能适应形势发展的需要。因此,加强这方面的研究,无论是对现在或将来,都将是一项非常有意义的工作。
水下焊接有干法、湿法和局部干法三种。

干法焊接
这是采用大型气室罩住焊件、焊工在气室内施焊的方法,由于是在干燥气相中焊接,其安全性较好。在深度超过空气的潜入范围时,由于增加了空气环境中局部氧气的压力,容易产生火星。因此应在气室内使用惰性或半惰性气体。干法焊接时,焊工应穿戴特制防火、耐高温的防护服。
与湿法和局部干法焊接相比,干法焊接安全性最好,但使用局限性很大,应用不普遍。

局部干法焊接
局部干法是焊工在水中施焊,人为地将焊接区周围的水排开的水下焊接方法,其安全措施与湿法相似。
由于局部干法还处于研究之中,因此使用尚不普遍。

湿法焊接
湿法焊接是焊工在水下直接施焊,而不是人为地将焊接区周围的水排开的水下焊接方法 。
电弧在水下燃烧与埋弧焊相似,是在气泡中燃烧的。焊条燃烧时焊条上的涂料形成套筒使气泡稳定存在,因而使电弧稳定,如图8-1所示。要使焊条在水下稳定燃烧,必须在焊条芯上涂一层一定厚度的涂药,并用石蜡或其他防水物质浸渍的方法,使焊条具有防水性。气泡由氢、氧、水蒸气和由焊条药皮燃烧产生的气泡;浑浊的烟雾生的其他氧化物。为克服水的
冷却和压力作用造成的引弧及稳弧困难,其引弧电压要高于大气中的引弧电压,其电流较大气中焊接电流大15%~20%。
水下湿法焊接与干法和局部干法焊接相比,应用最多,但安全性最差。由于水具有导电性,因此防触电成为湿法焊接的主要安全问题之一。

⑤ 水下切割用什么气体

水下气割常用的可燃气体有氢气、乙炔和液化石油气。
水下切割分三种:
一.水下气割:又称为水下氧可燃气切割。水下气割的原理与陆上气割相同。
水下气割的火焰是在气泡中燃烧的,水下气割常用的可燃气体有氢气、乙炔和液化石油气。为了将气体压送至水下,需要保持一定的压力。
由于乙炔对压力敏感,高压下会发生爆炸,因此,只能在深度小于5M的浅水中使用。水下气割一般采用氧&氢混合气体火焰。在水下进行气割需特别强调安全问题,因为使用易燃易爆的气体本身就具有危险性,而水下条件特殊,危险性更大。
二.氧弧水下切割的原理是:首先用管状空心电极与工件之间产生的电弧预热工件,然后从管电极中喷出氧气射流,使工件燃烧,建立氧化放热反应,并将熔渣吹掉。形成割缝使用的特殊管状焊条是由直径6~8mm或8~10mm的钢管制成的,其表面涂药,并与水隔离。用特殊的电极夹钳,把0.15~0.35MPa的氧气通人管中。当电弧加热金属时,氧气像平常的气割一样使金属氧化。由于这种方法简单及经济效果好,在水下切割中应用最普遍。其主要安全问题是防触电、防回火。
三.金属电弧切割:又叫水下电弧熔割,其原理就是利用电弧热使被割金属熔化而被切割。这种方法的设备、电极与湿法焊接相同。它是靠割炬的缓慢拉锯运动将熔融金属推开,形成割缝。因其电流密度大于湿法焊接,应更加注意绝 缘问题。故而没有氧弧切割常见。

⑥ 水下气割和水下电焊的原理是什么

介绍:水下焊接水下焊接与切割是水下工程结构的安装、维修施工中不可缺少的重要工艺手段。它们常被用于海上救捞、海洋能源、海洋采矿等海洋工程和大型水下设施的施工过程中。

水下焊接有干法、湿法和局部干法三种。

(一)干法焊接

这是采用大型气室罩住焊件、焊工在气室内施焊的方法,由于是在干燥气相中焊接,其安全性较好。在深度超过空气的潜入范围时,由于增加了空气环境中局部氧气的压力,容易产生火星。因此应在气室内使用惰性或半惰性气体。干法焊接时,焊工应穿戴特制防火、耐高温的防护服。

与湿法和局部干法焊接相比,干法焊接安全性最好,但便用局限性很大,应用不普遍。

(二)局部干法焊接

局部干法是焊工在水中施焊,但人为地将焊接区周围的水排开的水下焊接方法,其安全措施与湿法相似。

由于局部干法还处于研究之中,因此使用尚不普遍。

(三)湿法焊接

湿法焊接是焊工在水下直接施焊,而不是人为地将焊接区周围的水排开的水下焊接方法。

电弧在水下燃烧与埋弧焊相似,是在气泡中燃烧的。焊条燃烧时焊条上的涂料形成套筒使气泡稳定存在,因而使电弧稳定,如图8-1所示。要使焊条在水下稳定燃烧,必须在焊条芯上涂一层一定厚度的涂药,并用石蜡或其他防水物质浸渍的方法,使焊条具有防水性。气泡由氢、氧、水蒸气和由焊条药皮燃烧产生的气泡;浑浊的烟雾生的其他氧化物。为克服水的冷却和压力作用造成的引弧及稳弧困难,其引弧电压要高于大气中的引弧电压,其电流较大气中焊接电流大15%~20%。

水下湿法焊接与干法和局部干法焊接相比,应用最多,但安全性最差。由于水具有导电性,因此防触电成为湿法焊接的主要安全伺题之一。

水下焊接与切割的致险因素的特点是:电弧或气体火焰在水下使用,它与在大气中焊接或一般的潜水作业相比,具有更大的危险性。

⑦ 带水能焊接吗

不可以。
焊接过程中,水会分解成氢气和氧气。
直接形成氢气孔 氧化物,影响焊缝质量以及强度。出现融合不良。

⑧ 氢气为什么会在焊缝里聚集

氢气 (H₂) 最早与16世纪初被人工合成,当时使用的方法是将金属置于强酸中。1766–81年,亨利·卡文迪许发现氢气是一种与以往所发现气体不同的另一种气体[2] ,在燃烧时产生水,这一性质也决定了拉丁语 “hydrogenium” 这个名字(“生成水的物质”之意)。常温常压下,氢气是一种极易燃烧,无色透明、无臭无味的气体。

1766年由卡文迪许(H.Cavendish)在英国发现。
在化学史上,人们把氢元素的发现与“发现和证明了水是氢和氧的化合物而非元素”这两项重大成就,主要归功于英国化学家和物理学家卡文迪许(Cavendish,H.1731-1810)。
在化学史上,有一个与这些论文稿有关的有趣的故事。卡文迪许1785年做过一个实验,他将电火花通过寻常空气和氧气的混合体,想把其中的氮全部氧化掉,产生的二氧化氮用苛性钾吸收。实验做了三个星期,最后残留下一小气泡不能被氧化。他的实验记录保存在留下的文稿中,后面写道:“空气中的浊气不是单一的物质(氮气),还有一种不与脱燃素空气(氧)化合的浊气,总量不超过全部空气的1/12.一百多年后,1892年,英国剑桥大学的物理学家瑞利(Ragleigh,L.1842-1919)测定氮的密度时,发现从空气得来的氮比从氨氧化分解产生的氮每升重0.0064克,百思不得其解。化学家莱姆塞(Ramsay,W.1852-1916)认为来自空气的氮气里面能含有一种较重的未知气体。这时,化学教授杜瓦(Duvel,J.1842-1923)向他们提到剑桥大学的老前辈卡文迪许的上述实验和小气泡之谜。他们立即把卡文迪许的科学资料借来阅读,瑞利重复了卡文迪许当年的实验,很快得到了小气泡。莱姆塞设计了一个新的实验,除去空气中的水蒸气、二氧化碳、氧气和氮气后,也得到了这种气体,密度比氮气大,用分光镜检查后,肯定这是一种新的元素,取名氩。这样,卡文迪许当年的工作在1894年元素氩的发现中起了重要作用。从这个故事可看出卡文迪许严谨的科研作风和他对化学的重大贡献。1871年,剑桥大学建立了一座物理实验室,以卡文迪许的名字命名,这就是著名的卡文迪许实验室,它在几十年内,一直是世界现代物理学的一个重要研究中心。
在18世纪末以前,曾经有不少人做过制取氢气的实验,所以实际上很难说是谁发现了氢,即使公认对氢的发现和研究有过很大贡献的卡文迪许本人也认为氢的发现不只是他的功劳。早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特(van Helmont,J.B.1579-1644)曾偶然接触过这种气体,但没有把它离析、收集起来;波义耳虽偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解;1700年,法国药剂师勒梅里(Lemery,N.1645-1715)在巴黎科学院的《报告》上也提到过它。
但是,最早把氢气收集起来,并对它的性质仔细加以研究的是卡文迪许。
1766年卡文迪许向英国皇家学会提交了一篇研究报告《人造空气实验》,讲了他用铁、锌等与稀硫酸、稀盐酸作用制得“易燃空气”(即氢气),并用普利斯特里发明的排水集气法把它收集起来,进行研究。他发现一定量的某种金属分别与足量的各种酸作用,所产生的这种气体的量是固定的,与酸的种类、浓度都无关。他还发现氢气与空气混合后点燃会发生爆炸;又发现氢气与氧气化合生成水,从而认识到这种气体和其它已知的各种气体都不同。但是,由于他是燃素说的虔诚信徒,按照他的理解:这种气体燃烧起来这么猛烈,一定富含燃素;硫磺燃烧后成为硫酸,那么硫酸中是没有燃素的;而按照燃素说金属也是含燃素的。所以他认为这种气体是从金属中分解出来的,而不是来自酸中。他设想金属在酸中溶解时,“它们所含的燃素便释放出来,形成了这种可燃空气”。他甚至曾一度设想氢气就是燃素,这种推测很快就得以当时的一些杰出化学家舍勒、基尔万(Kirwan,R.1735-1812)等的赞同。由于把氢气充到气球中,气球便会徐徐上升,这种现象当时曾被一些燃素学说的信奉者们用来作为他们“论证”燃素具有负重量的根据。但卡文迪许究竟是一位非凡的科学家,后来他弄清楚了气球在空气中所受浮力问题,通过精确研究,证明氢气是有重量的,只是比空气轻很多。他是这样做实验的:先把金属和装有酸的烧瓶称重,然后将金属投入酸中,用排水集气法收集氢气并测体积,再称量反应后烧瓶及内装物的总量。这样他确定了氢气的比重只是空气的9%.但这些化学家仍不肯轻易放弃旧说,鉴于氢气燃烧后会产生水,于是他们改说氢气是燃素和水的化合物。
水的合成否定了水是元素的错误观念,在古希腊:恩培多克勒提出,宇宙间只存在火、气、水、土四种元素,它们组成万物。从那时起直到18世纪70年代,人们一直认为水是一种元素。1781年,普利斯特里将氢气和空气放在闭口玻璃瓶中,用电火花引爆,发现瓶的内壁有露珠出现。同年卡文迪许也用不同比例的氢气与空气的混合物反复进行这项实验,确认这种露滴是纯净的水,表明氢是水的一种成分。这时氧气也已发现,卡文迪许又用纯氧代替空气进行试验,不仅证明氢和氧化合成水,而且确认大约2份体积的氢与1份体积的氧恰好化合成水(发表于1784年)。这些实验结果本已毫无异议地证明了水是氢和氧的化合物,而不是一种元素,但卡文迪许却和普利斯特里一样,仍坚持认为水是一种元素,氧是失去燃素的水,氢则是含有过多燃素的水。他用下式表示“易燃空气”(氢)的燃烧:
(水+燃素)+ (水-燃素)→水
易燃空气(氢) 失燃素空气(氧)
1782年,拉瓦锡重复了他们的实验,并用红热的枪筒分解了水蒸气,明确提出正确的结论:水不是元素而是氢和氧的化合物,纠正了两千多年来把水当做元素的错误概念。1787年,他把过去称作“易燃空气”的这种气体命名为“Hydrogen”(氢),意思是“产生水的”,并确认它是一种元素。
物理性质折叠
M51内的氢气
氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,相同体积比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87 ℃时,氢气可转变成无色的液体;-259.1 ℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。金属钯对氢气的吸附作用最强。当空气中的体积分数为4%-75%时,遇到火源,可引起爆炸。
氢气是无色无味的气体,标准状况下密度是0.09克/升(最轻的气体),难溶于水。在-252 ℃,变成无色液体,-259 ℃时变为雪花状固体。

阅读全文

与水下焊接过程中氢气是如何产生相关的资料

热点内容
219焊管产厂 浏览:711
止水钢板宽度尺寸怎么量 浏览:76
上海机制石膏模具多少钱 浏览:609
聚合物锂电池烙铁怎么焊接 浏览:271
如何制作方管围栏 浏览:287
为什么焊接套管要3倍d 浏览:115
revit内建模型如何配钢筋 浏览:124
求购汽车模具一般多少钱 浏览:407
无缝拼接窗帘视频怎么拼 浏览:156
钢管弯曲跨度怎么计算 浏览:388
星际战甲钢铁充能怎么用 浏览:984
不锈钢306cr一吨多少钱 浏览:31
东莞三客模具怎么样 浏览:854
钢铁生锈属于什么氧化反应 浏览:829
铜贴面如何焊接 浏览:563
304型材方管 浏览:131
钢管怎么切出圆弧 浏览:683
不锈钢和铝合金哪个沉 浏览:118
铝合金除渣剂如何选择 浏览:729
首都钢铁厂迁往什么地方 浏览:317