㈠ 放射源铱-192有什么危害
铱-192是一种最稳定的放射性同位素,半衰期为73.827天。这一同位素在近距离治疗和工业射线照相技术中具有用途,特别是在天然气工业中用于无损检测钢铁的焊接处。可检查机械设备本身是否有裂纹或内部损害,在建筑、电力等领域使用比较广泛。据了解,隔着1.5米的距离,用一粒黄豆大小的铱-192,照射32毫米(一本书左右厚度)的钢板,40分钟后,射线就能穿透钢板。近距离接触该放射源危害很大。如果被人捡到,或者装在身上这样的近距离接触,可能会导致人员受到辐射剂量较大。此前曾经发生过有人员皮肤烧伤,或者因将放射源放在裤兜中,最终导致截肢的情况。如果接触时间更长,也有致命的风险。 字串6
目前,我国对放射源使用单位有许可证管理制度。对放射源本身则进行“身份证管理”,每一个放射源都有编码,其从被生产出来的“出生”,到“死亡”的注销都有全程信息化监管,若使用单位放射源需要转移、转让,必须到相关部门进行备案审批。 字串5
铱-192 - 简介
铱有两种自然稳定同位素。191 Ir和193 Ir,丰度分别为37.3%和62.7%。192 Ir夹在两个稳定同位素之间,也是最稳定的放射性同位素,
铱192——无损探伤检测用伽玛放射源之一,半衰期为73.827天。能量0.355MeV,可以穿透10-100mm厚钢板,属于2类放射源。
铱-192 - 历史
铱的发现与铂以及其他铂系元素息息相关。古埃塞俄比亚人和南美洲各文化的人自古便有使用自然产生的铂金属,当中必定含有少量其他铂系元素,这也包括铱。
17世纪西班牙征服者在今天的哥伦比亚乔科省发现了铂,并将其带到欧洲。然而直到1748年,科学家才发现它并不是任何已知金属的合金,而是一种全新的元素。
当时研究铂的化学家将它置于王水 (氢氯酸和硝酸的混合物)当中,从而产生可溶盐。制成的溶液每次都留下少量深色的不可溶残留物。
1803年,英国化学家史密森·特南特分析了残留物,并推断其中必含新的金属元素。
1813年,英国化学家约翰·乔治·求尔德伦(John George Children)首次熔化铱金属。
1842年,罗伯特·海尔(Robert Hare)首次取得高纯度铱金属。
所有铱同位素都是在1934至2001年间发现的。
铱-192 - 应用
铱-192在近距离治疗和工业射线照相技术中具有用途,特别是在天然气工业中用于无损检测钢铁的焊接处。
放射性同位素铱192源的出现,使便携式γ探伤机在工业中得到了广泛的应用。铱192γ探伤机由于γ射线能量适中,放射源比活度高,因而在常见的材料厚度下具有较高的探伤灵敏度。这种探伤机不需电源、不需冷却水、照射头体积小、可寄性大,极适于现场与野外应用。主要用于石油管线、钻井和其它关键工程结构的探伤中,以及癌症的放射疗法中,特别是在球罐等一类压力容器焊缝检测时,由于铱192γ探伤机可实现36O度一次全景曝光,因而大大提高了探伤效率,节省了人力、物力和财力,是其他无损检测手段所无法取代的。目前铱192γ探伤机一般采用贫铀或钨作为屏蔽材料,并以S通道为结构形式,使机体重量大大减轻,使于携带,有利于专业人员开展广泛的γ探伤服务。铱192的半衰期是74.2天,光子能量约0.4兆电于伏。
铱-192 - 安全
192 Ir同位素和其他放射性同位素一样是危险的。唯一的相关意外是在近距离治疗时受该同位素辐射的意外照射。192 Ir所放出的高能伽马射线会提高患癌症的可能性。外照射可导致烧伤、辐射中毒甚至死亡。摄入192 Ir可导致肠胃内膜烧伤。进入体内的192 Ir、192m Ir和194m Ir主要会积累在肝脏中,所放出的伽马射线和β辐射会对身体造成损害。
㈡ 焊接中的三级探伤是什么意思
焊接中的三级探伤是:焊缝探伤检测就是检查焊接的质量,需要一种具有放射性物质的专用仪器来检查。一般小单位没有,因为放射源需要专门管理,少数大型建筑安装施工的单位或专门的检验单位才有。
探测金属材料或部件内部的裂纹或缺陷。常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤等方法。物理探伤就是不产生化学变化的情况下进行无损探伤。
检查范围:
1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及焊漏等焊接质量。
2、内腔检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。
3、状态检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。
4、装配检查。当有要求和需要时,使用亚泰光电工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。
5、多余物检查。检查产品内腔残余内屑,外来物等多余物。
(2)检测焊接金属的放射源叫什么扩展阅读:
磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。
由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线。
而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。
在焊缝超声波探伤中一般把焊缝中的缺陷 分成三类:点状缺陷、线状缺陷、面状缺陷。
在分类中把长度小于10mm的缺陷叫做点状缺陷;一般不测长,小于10mm的缺陷按5mm计。把长度大于10mm的缺陷叫线状缺陷。把长度大于10mm高度大于3mm的缺陷叫面状缺陷。
㈢ 铱—192应该没有放射性吧,那为什么伽马探伤仪用铱-192作伽马放射源呢
铱—192就是有放射性啊,对人体是有很大损伤的,长期接触会致癌,损害人体造血功能,改变人的遗传,严重会是皮肤水肿,指甲变黑,然后心力衰竭死亡。
㈣ 焊接中的三级探伤是什么意思
摘要 你好,焊接中的三级探伤是:焊缝探伤检测就是检查焊接的质量,需要一种具有放射性物质的专用仪器来检查。一般小单位没有,因为放射源需要专门管理,少数大型建筑安装施工的单位或专门的检验单位才有。
㈤ 铯137放射源
铯-137是金属铯的同位素之一,呈银白色、质软、化学性质极为活泼,遇水发生爆炸,放射性较强,人体摄入量小于0.25Gy属于安全范围;超过此值会导致造血系统、神经系统损伤,非正常生育乃至绝育;人体摄入量超过6Gy,能够致人死亡。铯在工程施工中被用于钢管焊接中的工业探伤,由于有放射性,平时储存在铅容器内。"铯-137"是一种重金属,与"铀-235"同属于放射性物质中毒组。
㈥ 什么是焊缝探伤检测
焊缝探伤检测就是探测金属材料或部件内部的裂纹或缺陷。
常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤等方法。物理探伤就是不产生化学变化的情况下进行无损探伤。
物理探伤就是不产生化学变化的情况下进行无损探伤。
便携式超声波焊缝缺陷检测仪,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(裂纹、夹杂、气孔、未焊透、未熔合等)的检测、定位、评估和诊断。
既用于实验室,也用于工程现场检测。广泛应用在锅炉压力容器制造中焊缝检测、工程机械制造业焊缝质量评估、钢铁冶金业、钢结构制造、船舶制造、石油天然气装备制造等需要缺陷检测和质量控制的领域。
(6)检测焊接金属的放射源叫什么扩展阅读:
探伤检查范围:
1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及焊漏等焊接质量。
2、内腔检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。
3、状态检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。
4、装配检查。当有要求和需要时,使用亚泰光电工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。
5、多余物检查。检查产品内腔残余内屑,外来物等多余物。
超声探伤基本原理:
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
优缺点:
超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点。
缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。
参考资料来源:网络-探伤
㈦ 检测控制钢板厚度的放射线是 检测控制钢板厚度或者金属内部的砂眼及裂缝的放射线是
α、β、γ来三种射线中α射线电离源能力最强,γ射线穿透能力最强,因此用γ射线来检查金属内部的伤痕,其原理为当金属内部有伤痕,放射源透过钢板的γ射线强度发生变化,计数器就能有不同的显示,从而可知金属内部有伤痕.但是注意放射源具有放射性,应注意安全,有严格的保护措施.
故选C