① 热锻模具钢需具备哪些基本特性
HMAX系列热锻模具钢具备具备以下特点:1.红硬高、2.韧性好、3.抗冷热疲劳强、4.热导率性能高、5.淬透性强、6.机械强度高等特点。
HMAX-3新型高红硬性高强韧高耐磨模具
HMAX-3模具钢是HMAX模具钢系列之一,基体纯净、 组织均匀、是一种高性能的铬-钼-钒合金钢材,具有良好的抗热裂纹、开裂、热磨损和塑性变形能力。具有以下特点:在各个方向上都有优异的韧性和延展性、好的抗回火性能、良好的高温强度、优异的淬透性、热处理、表面涂覆后良好的尺寸稳。
由于该产品增强了抵抗模具主要失效机理(如热龟裂、热裂纹、热磨损及塑性变形)的能力,因此能显著提高模具寿命并获得更佳的经济效益。适用于高要求的压铸、热锻和热挤压行业。
适用于较严苛条件下压铸(如发动机的缸盖、 缸体、 变速箱壳体、 活塞等) ; 有高抛光要求, 耐磨性要求及模次要求更高的塑胶模具; 耐磨性及抗开裂性要求更高的热挤压模具(如7系列铝合金)
HMAX系列热锻模具钢之一HMAX-4模具钢种的各项综合性能良好,适用于制作受热温度较高,使用条件要求苛刻的铜合金压铸、热锻、热挤压、热剪切、热轧辊模热作模具。汽车变速箱同步器铜锥环压铸模、铜弯管接头压铸模、1/2铜闸阀体压铸模、1铜闸阀体壳压铸模、铜管热挤压模、轴承套圈热挤压模、液锻活塞模等模具比3CR2W8V模次提高3-6倍。
② 热锻模具钢的热处理
高热稳定性热锻模具钢5Cr2NiMoVSi的热处理
来源:数控机床网 时间:2008-6-3 16:01:46
国际模具网
摘要:5Cr2NiMoVSi钢是近年来我国研制出的高热稳定性热锻模具钢。虽然尚未纳入GB/T1299-2000《合金工具钢》国家标准,但已在实际生产中应用多年,效果亦很好。是值得试用推广的热锻模具新钢种。
关键词:5Cr2NiMoVSi钢;高热稳定性;高韧性;高寿命
5Cr2NiMoVSi钢是在5CrNiMo和4Cr5MoSiV(H11)钢的基础上研制的新钢种。强度高于5CrNiMo钢而稍低于4Cr5MoSiV(H11)钢;冲击韧度高于5CrNiMo钢和4Cr5MoSiv(H11)钢;淬透性接近5CrNiMo钢。加热时奥氏体晶粒长大倾向小,热处理温度范围较宽,有利于大尺寸模块长时间加热保温。特别是,钢的热稳定性高于5CrNiMo钢,接近于4Cr5MoSiv(H11)钢。因此特别适合于与锻件接触时间较长因而模具工作面温升较高的压力机锻模,和模锻锤锻模。
虽然5Cr2NiMoVSi钢未纳入GBT1299-2000《合金工具钢》国家标准,但已在实际生产中应用多年,效果亦好。是值得试用推广的热锻模具新钢种。
1 5Cr2NiMoVSi钢的成份与性能
1.1 5Cr2NiMoVSi钢的化学成分
1.2 5Cr2NiMoVSi钢的物理性能
热导率λ(室温)·W/(m·k):33.5。
比热容Cp(室温)·J/(Kg·k):501.6。
2 5Cr2NiMoVSi钢的热加工与锻造
热加工锻造是模具制造工艺过程中的重要工序,模具锻造质量的优劣,直接影响到模具热处理质量的优劣,关系到模具的使用寿命。锻造的目的不仅是为了将坯料锻造成所需要的形状,更重要的是可以改善和提高模具的性能,保证模具的使用寿命。
模具钢经合理锻造后,有如下效果:
A.使块状、网状、带状碳化物破碎,分布均匀。
B.改变模具中流线的方向,使流线合理分布。
C.改善模具中的气孔,疏松,提高钢的比重和致密度。
3 5Cr2NiMoVSi钢的热处理工艺
3.1 预先热处理
5Cr2NiMoVSi钢等温退火后的组织为粒状珠光体+极少量未溶碳化物(合金渗碳体.M23C6和少量M6C、Mc,总含量为6.79%)硬度为220-230HBW。
3.2 淬火工艺规范
5Cr2NiMoVSi钢的淬火温度范围较宽,可在960-1010℃范围内选择。在此温度范围内加热,钢的奥氏体晶粒度在9-10级之间,温度升到1060℃时,奥氏体晶粒开始急剧长大。
5Cr2NiMoVSi钢的淬火加热和冷却工艺,是影响模具变形和开裂,获得理想淬火组织和理想力学性能的关键。由于锤锻模具尺寸较大,在冷却过程中产生的热应力及组织应力也很大,因此,锤锻模淬火冷却前要进行适当的预冷。一般应预冷至钢的,AC3温度附近,既880℃左右。预冷的方式:一是模具随炉预冷,均温后出炉淬火冷却;二是出炉在空气中预冷,小模块(≤250mm)的预冷时间3-5min,大模块(≥300mm)约5-8min。然后放入30-80℃的油中冷却。为了冷却均匀,最好进行搅拌冷却。锻模一般冷至约150-200℃时就应从油槽中取出,并立即回火。这时既可根据经验确定:模具提出油面时冒青烟而不再着火;也可以使用红外测温仪确定。锻模在油中淬火冷却的时间请参照表4。
5Cr2NiMoVSi钢在960-1010℃温度范围内淬火后的组织为板条马氏体+孪晶马氏体及少量残余奥氏体。淬火后硬度为54-61HRC。
3.3 回火工艺规范
5Cr2NiMoVSi钢具有较好的回火抗力,经550℃回火后仍能保持高硬度(51-53HRC)。经600℃回火后,硬度为47-48HRC,650℃回火后下降为42-44HRC。而5CrNiMo钢经650℃回火后硬度不足30HRC。可见5Cr2NiMoVSi钢的热稳定性比5CrNiMo钢高出150℃左右。在450-550℃范围内回火时,从基体中析出M2C和VC等碳化物,具有较高的弥散度,产生二次硬化效应。
由于大、中、小型模具的硬度要求不同,截面尺寸(主要是高度H)也不同,因此推荐的回火温度范围也较宽(请参照表5)。
一般情况下,由于模具淬火应力很大,如果回火时加热速度过快,会产生新的应力,也常会使模具的变形或开裂的可能性增大,所以在回火加热时,应采用等温预热分段加热回火形式。预热温度不应高于350℃,高于350℃时,模具心部的残余奥氏体将向上贝氏体转变,不仅会降低模具的强度,而且会显著降低模具的冲击韧性。因此等温预热的温度一般取280℃左右,此温度下,残余奥氏体将向下贝氏体转变。由于下贝氏体具有高的强韧性和冲击韧性,因而获得下贝氏体组织是有利于提高模具的使用寿命。
由于5Cr2NiMoVSi钢含有0.80-1.20%的Mo,因此对第二类回火脆性并不敏感,所以回火后的冷却可采用空冷。虽然慢冷对钢的冲击韧性略有降低,但绝对值仍然满足技术条件要求。
在生产条件下,常常采用一次回火。但由于回火不足(特别是大、中型模块),在生产中经常发生采用一次回火(加上回火时问短)后,模具极易产生开裂,有的甚至在未使用的情况下产生开裂。因此,在第一次回火后,应当再进行第二次回火,将模具的内应力降至最低。
第二次回火必须在第一次回火后模具冷却至室温,使残余奥氏体充分转变后才能进行。第二次回火温度应低于第一次回火温度约10℃左右。
4 5Cr2NiMoVSi钢热处理后的力学性能
5Cr2NiMoVSi钢经960-1010℃加热淬火,600-680℃加热回火后,可获得较高的综合力学性能。
4.1 5Cr2NiMoVSi钢985℃淬火后的力学性能。
4.2 5Cr2NiMoVSi钢的高温强度
5Cr2NiMoVSi钢在500℃以下试验时,高温强度与5CrNiMo钢相近,当试验温度高于600℃时,5Cr2NiMoVSi钢的高温强度比5CrNiMo钢高出一倍以上。这与5CrNiMo钢中的M3C碳化物在高温下易聚集长大有关。
4.3 5Cr2NiMoVSi钢高温冲击韧度
500-550℃是模具工作面的工作温度范围,在此温度下,5CrNiMo钢的冲击韧度处于谷值,而5Cr2NiMoVSi钢的冲击韧度仅有少许下降,比5CrNiMo钢高出一倍。
5 5Cr2NiMoVSi钢在汽车前轴锻模中的应用
东风EQ140型汽车前轴锻模的尺寸为1825×395×300mm,热处理后的硬度要求为37-41HRC。锻模在工作中所受的冲击力比较小,但与锻件接触的时间长。模具表面的工作温度较高。因此要求模具有高的高温强度、耐磨性、抗回火稳定性及耐热疲劳性。
原前轴模在采用5CrNiMo钢制造时,由于热稳定性及强度低,不能满足压力机模具对性能的要求,使用中常因热磨损和热裂严重而失效,使用寿命一般为5500-6000件。在改用5Cr2NiMoVSi钢制造后,使用寿命显著提高。
按上述热处理工艺生产的5Cr2NiMoVSi钢制前轴锻模的使用寿命达到了9000件左右,比5CrNiMo钢提高了50%左右,效果比较明显。
6 结语
(1)5Cr2NiMoVSi钢经960-1010℃加热淬火,600-680℃加热回火后,可获得较高的综合力学性能。
(2)5Cr2NiMoVSi钢具有较高的热稳定性,比5CrNiMo钢高150℃以上。
(3)5Cr2NiMoVSi钢锻模的使用寿命比5CrNiMo钢锻模提高50%以上。
(4)5Cr2NiMoVSi钢是值得试用推广的热锻模具新钢种。
(5)45Cr2NiMoVSi钢的化学成分除C和Si比5Cr2NiMoVSi钢略低外,其它化学成分基本一致,因此可参照上述工艺进行热处理。
国际模具网
http://www.2mould.com/news_show/2008/6/3/24512.html
③ 什么是钢的红硬性
高速钢 开放分类: 冶金1. 概述 高速钢又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。 高速钢的热处理工艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加 热到淬火温度1220~1250℃,后油冷。工厂均采用盐炉加热。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。 (1)生产制造方法:通常采用电炉生产,近来曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。 (2)用途:用于制造各种切削工具。如车刀、钴头、滚刀、机用锯条及要求高的模具等。 2. 主要生产厂 我国大连钢厂、重庆钢厂、上海钢厂是生产高速钢的主要生产厂。 3. 主要进口生产国家 我国主要从日本、俄罗斯、德国、巴西等国进口。 4. 种类 有钨系高速钢和钼系高速钢两大类。钨系高速钢有W 18 CR 4 V,钼系高速钢有W 6 Mo 5 Cr 4 V 2 等。 5. 规格和外观质量 规格主要有圆钢和方钢。钢材的表面要加工良好,不得有肉眼可见的裂纹、折叠、结疤和发纹。冷拔钢材表面应洁净、光滑、无夹杂和氧化皮等。 6. 化学成分 我国国标和日本工业标准中主要钢号的化学成分如表 6—7—26。 . 物理性能 高速钢一般不做抗拉强度检验,而以金相、硬度检验为主。钨系和钼系高速钢经正确的热处理后,洛氏硬度能达到63以上。钢材的酸浸低倍组织不得有肉眼可见的缩孔 、翻皮。中心疏松,一般疏松应小于1级。金相检验的内容主要包括脱碳层、显微组织和碳化物不均匀度3个项目。高速钢不应有明显的脱碳。显微组织不得有鱼骨状共晶莱氏体存在。高速钢中碳化物不均匀度对质量影响最大,目前冶金和机械部门对碳化物不均匀度的级别 十分重视。根据钢的不同用途可对碳化物不均匀度提出不同的级别要求,通常情况下应小于3级。 8. 包装 成捆交货,用铁丝捆扎,并有标牌标明炉号,规格等印记。但对冷轧钢还要涂防锈油,并用防潮纸包裹。对银亮钢还应装箱。 9. 注意事项 检验高速钢碳化物不均匀度与试样的腐蚀时间有关。有关标准中只提出腐蚀要适当不能过腐蚀,这一点往往被人们所忽视。实践证实,如果发生了过腐蚀,就会将碳化物染黑,表现出不均匀程度改善的假相,就可能将质量不好的高速钢误判为优质钢,这一点尤为重要。
④ 热作模具钢
热作模具钢的硬度并不比冷冲模具钢的硬度高,热作模具钢的特点是耐高温,红硬性好,耐热疲劳性能好。制作冷冲模具,其使用寿命不会比冷冲模具钢制作的模具好。一般的冷冲模具钢在高温时,其硬度就会降低,影响模具的使用寿命。
⑤ 热作模具和冷作模具的区别是啥 它们分别有什么特点
1、分类不同:冷作模具钢包括制造冲截用的模具(落料冲孔模、修边模、冲头、剪刀)、冷镦模和冷挤压模、压弯模及拉丝模等;热作模具包括锤锻模、热挤压模和压铸模三类。
2、工作条件不同:冷作模具钢在工作时,需要模具有高的硬度和耐磨性、高的抗弯强度和足够的韧性,以保证冲压过程的顺利进行;热作模具工作时需要热作模具钢的基本使用性能具是热塑变抗力高,包括高温硬度和高温强度、高的热塑变抗力以及很好热疲劳抗力。
性能特点:
受冲击负荷且刀间单薄的冷作模具;尺寸大、形状复杂重负荷锤锻模用钢,具有很高的力学性能,特别是塑变抗力及韧性高。
而热挤压模用钢,具有很高的回火稳定性和高的耐热疲劳性能。
(5)热锻模具的红硬点是什么意思扩展阅读
选用方法:
1、冷作模具钢选用时需考虑加工方法、应力状态、成形加工对象的材料性质、生产数量、板材厚度等,此外模具的大小及尺寸精度也是不可忽略的因素。
2、负荷较小或小批量生产时使用低合金工具钢(SKS),负荷较大或大批量生产时使用冷作模具钢(SKD),负荷更大时选用高速工具钢及粉末高速工具钢。
3、适用于耐磨场合的有冷作模具钢、高速工具钢及高合金高速工具钢,适用于耐冲击场合的有8Cr-2Mo系模具钢和基体型高速工具钢。
参考资料
网络-冷作模具钢
网络-热作模具钢
⑥ 热锻模具用什么材料,热锻模具的热处理方法
热锻模具最常用的钢材是3Cr2W8V,现在有许多新的热锻模具钢材比其还好。比如:
225Cr4W5Mo2V
5Cr4W5Mo2V(RM-2)钢,ωc为5%,合金元素总的质量分数为12%,碳化物较多,以Fe3W3C为主,比3Cr2W8V钢具有更高的热强性、耐磨性及热稳定性。在硬度为40HRC时热稳定性可达700℃,但是它的碳化物分布不均匀,韧性较差。可用作精锻模、热挤压模等。
5Cr4Mo3SiMnVAl
5Cr4Mo3SiMnVAl(O12Al)钢是冷、热作兼用模具钢。该钢有较高的热硬性,热稳定性高于3Cr2W8V钢,热疲劳性也比3Cr2W8V钢优越得多。
6Cr4Mo3Ni2WV
6Cr4Mo3Ni2WV(CG-2)钢是在高速钢的基体钢6W6Mo5Cr4V低碳M2钢)的基础上做适当改进,增加Ni量,降低W、Mo量研制而成的冷、热兼用基体钢。其室温及高温强度、热稳定性均高于3Cr2W8V钢,但高温冲击韧度低于3Cr2W8V钢。
4Cr3Mo3W4VNb
4Cr3Mo3W4VNb(GR)钢属于钨钼系热作模具钢,少量Nb的加入提高钢的回火抗力及热强性。它比3Cr2W8V钢有更高的屈服强度和热稳定性、冷热疲劳抗力及高温抗压强度,但是韧性较差。用作热镦、精锻模具。
3Cr2W8V钢铝合金压铸模,按常规热处理工艺为1050~1100℃加热,在70~80℃油中淬火冷却,由于热应力和组织应力的共同作用,畸变量往往过大,会增加打磨、钳修的工作量。
为控制模具淬火畸变,首先在预备热处理上做到:
1)锻后正火+高温回火。正火:880℃±10℃保温(保温时间以2min/mm计算)后空冷。高温回火:730℃±10℃保温(保温时间以4min/mm计算)后空冷,硬度200~230HB。
2)粗加工后调质处理。1100~1150℃加热(透烧后保温0.5~1h)后油冷,再在700~720℃保温(透烧后保温2h)后空冷,获均匀的索氏体组织,同时消除粗加工后的机加工应力。
3)精加工后的时效(去应力退火)。300~400℃,8~12h时效。
其次在淬火、回火上:
1)分段预热,减小淬火加热时的热应力,预热温度600~650℃及850~900℃。
2)选用较低的淬火加热温度1000~1020℃。
3)选用预冷分级热油淬火。空气预冷温度至850℃左右;分级冷却温度460~500℃;热油(130~140℃)淬火、空冷;再用100℃沸水清洗工件。
4)采用600~620℃二次回火,稳定组织。
⑦ 热锻模和锤锻模有什么区别热作模具有是什么 还有热锻模选用的材料和加工工艺路线是怎样的谢谢
热锻模和锤锻模都属于热锻模,也就是说锤锻模是热锻模的一种。
热作模具主要用于制造对高温状态下的工件进行压力加工的模具,如热锻模
具、热挤压模具、压铸模具、热镦锻模具等。
常用的热作模具材料为中、高含碳量的添加铬钨钼钡等合金元素的合金模具钢。对
特殊要求的热作模具有时采用高合金奥氏体耐热模具钢、高温合金、难熔合金制造。
选择模具材料是要注意:
一、模具材料的基本性能
进行模具材料选择时,必须首先考虑模具的某些基本性能必须能适应所制造的模具的
需要,在一般情况下,其中三种性能是主要的,即钢的耐磨性、韧性、硬度和红硬性。这三种
性能可以比较全面地反映模具材料的综合性能,应可以在一定程度上决定其应用范围。
当然对于一种模具的要求来说,可能其中的一种或两种是主要的,而另外的一种或
两种是次要的。
1. 模具材料的耐磨性模具工作时,表面往往要与工件产生多次强烈的摩擦,模具
必须在此情况下仍能保持其尺寸精度和表面粗糙度,不致于早期失效。要求模具材料既
能承受机械磨损,而且在承受重载和高速摩擦时,模具被摩擦表面能够形成薄而致密附
着的氧化模,保持润滑作用,防止模具和被加工工件的表面之间产生粘附、焊接招致工件
表面擦伤,又能减少模具表面进一步氧化造成的损伤。为了改善模具材料的耐磨性,就
要采取合理的生产工艺和处理工艺,使模具材料既具有高硬度又使材料中的碳化物等硬
化相的组成、形貌和分布合理,当然模具工作过程中的润滑情况和模具材料的表面处理,
也对改善模具的耐磨性能有良好的影响。
2.模具材料的韧性对于受强烈冲击载荷的模具,如冷作模具的冲头,锤用热锻模
具、冷镦模具、热镦锻等,模具材料的韧性是十分重要的考虑因素,对于在高温下工
作的模具,还必须考虑其在工作温度下的高温韧性。对于多向受冲击载荷的模具,还必
须考虑其等向性。
模具材料的化学成分、晶粒度、碳化物、夹杂物的组成数量、形貌、尺寸和分布情况:
金相组织、微观偏析等,都会对材料的韧性带来影响。钢的纯净度、锻轧变形的方向会对
横向性能产生很大的影响。模具材料的韧性往往和耐磨性、硬度是互相矛盾的。因之根
据模具的具体工作情况,选择合理的模具材料,并采用合理的精炼、热加工和热处理、表
面处理工艺使模具材料得到耐磨性和韧性等综合性能的最佳配合,以适应模具的需要,
足模具材料的重要发展的途径。
3. 硬度和红硬性硬度是模具材料的主要技术性能指标,模具在工作时必须具有高
的硬度和强度,才能保持其原来的形状和尺寸,一般冷作模具钢,要求其淬回火硬度为
60HRC 左右,而热作模具钢为45-50HRC 左右,并且要求热作模具材料在其工作温度下
仍保持一定的硬度。
红硬性是指模具材料在一定温度下保持其硬度和组织稳定性抗软化的能力,对于热
作模具材料和部分重载荷冷作模具材料,是重要的性能指标。
另外,还要根据不同模具的实际工作条件,分别考虑其实际要求的性能,如对热作模具钢要考虑其抗冷热疲劳性能,对压铸模具应考虑其耐融熔金属的冲蚀性能;对于重载
荷型腔模具应注意其等向性;对于高温工作的热作模具应考虑其在工作温度下的抗氧化
性能;对于在腐蚀介质工作的模具,应注意其抗腐蚀性能;对在高载荷下工作的模具应考
虑其抗压强度、抗拉强度和抗弯强度、疲劳强度及断裂韧度等。
二、模具材料的工艺性能
在模具总的制造成本中,特别是对于小型精密复杂模具,模具材料费往往只占总成
本的10-20%,有时甚至低于10%;而机械加工、热处理、表面处理、装配、管理等费用
要占成本的80%以上。所以模具材料的工艺性能就成为影响模具成本的一个重要因素,
改善模具的工艺性能,不仅可以使模具生产工艺简单,易于制造,而且可以有效地降低模
具制造费用。模具材料的工艺性能,经常要考虑的有以下几种。
1. 可加工性模具材料的可加工性包括冷加工性能,如切削、磨削、抛光、冷挤压、冷拉
工艺性,热加工性能包括热塑性和热加温度范围等。模具钢主要属于过共析钢和莱氏体
钢,冷加工和热加工性能一般都不太好,在生产过程中,必须严格地控制热加工和冷加工的
工艺参数,以避免产生缺陷和废品,另一方面还必须通过改善钢的纯净度,减少有害的杂质,
改善钢的组织状态,并采取一些措施,以改善钢的工艺性能,降低模具的制造费用。
为了改善模具钢的切削性和磨削性,从20 世纪30 年代开始,研究向钢中加入适量
的硫、铅、钙、稀土金属等元素或导致模具钢中碳的石墨化的元素,发展了各种易切削模
具钢。以后发现有些易切削元素加入以后,会在模具钢中生产一些有害的夹杂物(如硫
化铁等),会使钢的力学性能,特别是横向的塑性、韧性下降,于是又在精炼后期对钢水进
行变性处理,通过加入变性剂(如(SiCa,稀土元素等),形成富钙硫化物或稀土硫化物使硫
化物球化,抑制了硫对钢的力学性能的不利影响,保留和发挥了其对钢的可加工性和磨
削性的有利作用,使易切削模具钢得到进一步地发展。
有些模具材料,如高钒高速钢、高钒高合金模具钢的磨削性很差、磨削比很低,不便
于磨削加工,近年来改用粉末冶金生产,可以使钢中的碳化物细小、均匀,完全消除了普
通工艺生产的高钒模具钢中的大颗粒碳化物,不但使这类钢的磨削性大为改善,而且改
善了钢的塑性、韧性等性能,使之能在模具制造中推广应用。
有些模具对表面粗糙度要求很低,如要求镜面抛光的塑料模具和一些冷作模具。就
要采用抛光性能很好的模具材料,这类钢种往往要采用电渣重熔或真空电弧重熔等工艺
进行精炼,得到高纯净度的钢材,以适应镜面抛光的要求。
皮纹加工性:有些塑料制品要求制造有皮纹、装饰性图案或文字花样的表面,为了生
产这些制品,就要求在压制这些制品的模具表面加工出相应的清晰的花纹、图案来。而
加工这些图案、皮纹一般是采用化学蚀刻工艺,要求模具材料要能适应这种化学蚀刻工
艺,蚀刻以后,能够在模具表面得到图案清晰、纹理清楚的皮纹和图案。
铸造工艺性能:为了简化生产工艺,国内外近年来致力于发展采用铸造工艺直接生
产出接近成品模具形状的铸造毛坯。如我国已经研究采用铸造工艺生产一部分冷作模
具、热作模具和玻璃成形模具。相应地发展了一些铸造模具用钢,对这类材料要求具有
良好的铸造工艺性能,如流动性、收缩率等。
焊接性:有些模具要求在工作条件最苛刻的部分堆焊接特种耐磨或耐蚀材料,有些
模具希望在使用过程中采用堆焊工艺进行修复后重新使用。对这类模具就要求选用焊
接性好的模具材料,以简化焊接工艺,可以避免或简化焊前预热和焊后处理工艺,更好地
适应焊接工艺的需要,相尖地发展了一批焊接性良好的模具材料。
冷变形性:为了简化工艺,提高模具的制造效率,对批量生产的型腔模具,有些采用
冷挤压工艺压制型腔,用淬硬的凸模将模具的型腔直接压制出来,要求模具材料具有良
好的冷变形性能,如塑料模具钢中的低碳低硅钢就具有良好的冷变形性能。
2. 淬火温度和淬火变形为了便于生产,希望模具材料的淬火温度范围要宽一些,
特别是有些模具要求采用火焰加热局部淬火时,难以精确地测量和控制温度,就要求模
具钢能适应较宽的淬火温度范围,模具在热处理时,要求其变形程度要小,特别是一些形
状复杂的精密模具,淬硬以后难以修整,就对淬回火的变形程度要求更为严格,应该选用
微变形模具钢制造。
3.淬透性和淬硬性淬硬性主要取决于钢的碳含量,淬透性主要取决于钢的化学成
分、合金元素含量和淬火前的组织状态。对于大部分要求高硬度的冷作模具,对淬硬性
要求较高;对于大部分热作模具和塑料模具,对于硬度的要求不太高,往往更多地考虑其
淬透性;特别是对于一些大截面深型腔模具,为了使模具的心部也能得到良好的组织和
均匀的硬度,就要求选用淬透性好的模具钢。另外对于形状复杂、要求精度高又容易产
生热处理变形的模具,为了减少其热处理变形,往往尽可能采用冷却能力弱的淬火介质
(如油冷、空冷、加压淬火或盐浴淬火),就需要采用淬透性较好的模具材料,以得到满意
的淬火硬度和淬硬层深度。
4.氧化脱碳敏感性模具在加热过程中,如果产生氧化、脱碳现象,就会改变模具的
形状和性能,影响模具的硬度、耐磨性和使用寿命,招致模具早期失效。
有些钼含量高的模具钢,由于容易氧化、脱碳,有一段时间限制了其推广应用,直到
热处理工艺装备发展以后,采用特种热处理工艺(如真空热处理,可控气氛热处理、盐浴
热处理等)以后,能够避免氧化、脱碳,这类模具钢,才顺利得到推广应用。钼基合金虽然
具有极为优秀的高温性能,但是由于在高温下极易氧化,严重地限制了其应用范围。
至于加工路线要具体到哪套模具哪个工件订制加工路线了
⑧ 红硬度是什么意思
你说的红硬度可能是红硬性,就是在高温下还有硬度和强度的意思.比如高速钢,热作模具钢都有这样的性能.
⑨ 怎样提高热锻模具的使用寿命
看到你模具图片的话,或许可以给点意见。
通常你要注意这些问题:
选专用热锻模具钢材,资金允许最好选进口的。
找专业真空热处理(硬度略低于正常值)。
加大加厚模具尺寸。
模芯加外框(过盈配合)。
合理控制坯料温度。
上下模留出足够的废料溢出间隙。
热锻的产品,价格高,量不大,我们做的一些门把手一般每款要做到2万pcs左右,一套模具基本没问题。当然,坏的也是崩裂损坏居多。
⑩ 模具表面热处理论文怎么写
我们公司是专门做模具的,所以在这方面会有一些建议供你参考,希望答案能对你有用。如果你需要了解其他一些知识的可以看一下我们网站的。
模具热处理是保证模具性能的重要工艺过程。它对模具的如下性能有着直接的影响。
模具制造精度:组织转变不均匀、不彻底及热处理形成的残余应力过大造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。
模具的强度:热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。
模具的工作寿命:热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。
模具的制造成本:作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。
正是热处理技术与模具质量有十分密切的关联性,使得这二种技术在现代化的进程中,相互促进,共同提高。 20 世纪 80 年代以来,国际模具热处理技术发展较快的领域是真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。
模具的真空热处理技术
真空热处理技术是近些年发展起来的一种新型的热处理技术,它所具备的特点,正是模具制造中所迫切需要的,比如防止加热氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度。真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。
按采用的冷却介质不同,真空淬火可分为真空油冷淬火、真空气冷淬火、真空水冷淬火和真空硝盐等温淬火。模具真空热处理中主要应用的是真空油冷淬火、真空气冷淬火和真空回火。为保持工件(如模具)真空加热的优良特性,冷却剂和冷却工艺的选择及制定非常重要,模具淬火过程主要采用油冷和气冷。
对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),它可以提高与表面质量相关的机械性能,如疲劳性能、表面光亮度、而腐蚀性等。
热处理过程的计算机模拟技术(包括组织模拟和性能预测技术)的成功开发和应用,使得模具的智能化热处理成为可能。由于模具生产的小批量(甚至是单件)、多品种的特性,以及对热处理性能要求高和不允许出现废品的特点,又使得模具的智能化热处理成为必须。模具的智能化热处理包括:明确模具的结构、用材、热处理性能要求;模具加热过程温度场、应力场分布的计算机模拟;模具冷却过程温度场、相变过程和应力场分布的计算机模拟;加热和冷却工艺过程的仿真;淬火工艺的制定;热处理设备的自动化控制技术。国外工业发达国家,如美国、日本等,在真空高压气淬方面,已经开展了这方面的技术研发,主要针对目标也是模具。
模具的表面处理技术
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。
模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。 渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此模具的表面强化是采用渗氮技术较早,也是应用最广泛的。
模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。
硬化膜沉积技术目前较成熟的是 CVD 、 PVD 。为了增加膜层工件表面的结合强度,现在发展了多种增强型 CVD 、 PVD 技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪 80 年代开始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平。
模具材料的预硬化技术
模具在制造过程中进行热处理是绝大多数模具长时间沿用的一种工艺,自上个世纪 70 年代开始,国际上就提出预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以预硬化技术的研发投入不大。随着加工机床和切削刀具性能的提高,模具材料的预硬化技术开发速度加快,到上个世纪 80 年代,国际上工业发达国家在塑料模用材上使用预硬化模块的比例已达到 30 %(目前在 60 %以上)。我国在上世纪 90 年代中后期开始采用预硬化模块(主要用国外进口产品)。
模具材料的预硬化技术主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。
采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期.