导航:首页 > 钢铁贸易 > 改善钢铁材料性能的方法有哪些种

改善钢铁材料性能的方法有哪些种

发布时间:2022-12-08 06:06:33

1. 提高钢结构耐腐蚀能力有哪些措施

(1)耐候钢:耐腐蚀性能优于一般结构用钢的钢材称为耐候钢,一般含有磷、铜、镍、铬、钛等金属,使金属表面形成保护层,以提高耐腐蚀性。其低温冲击韧性也比一般的结构用钢好。标准为《焊接结构用耐候钢》(GB4172-84)。
(2)热浸锌:热浸锌是将除锈后的钢构件浸入600℃左右高温融化的锌液中,使钢构件表面附着锌层,锌层厚度对5mm以下薄板不得小于65μm,对厚板不小于86μm.从而起到防腐蚀的目的。这种方法的优点是耐久年限长,生产工业化程度高,质量稳定。因而被大量用于受大气腐蚀较严重且不易维修的室外钢结构中。如大量输电塔、通讯塔等。近年来大量出现的轻钢结构体系中的压型钢板等。也较多采用热浸锌防腐蚀。热浸锌的首道工序是酸洗除锈,然后是清洗。这两道工序不彻底均会给防腐蚀留下隐患。所以必须处理彻底。对于钢结构设计者,应该避免设计出具有相贴合面的构件,以免贴合面的缝隙中酸洗不彻底或酸液洗不净。造成镀锌表面流黄水的现象。热浸锌是在高温下进行的。对于管形构件应该让其两端开敞。若两端封闭会造成管内空气膨胀而使封头板爆裂,从而造成安全事故。若一端封闭则锌液流通不畅,易在管内积存。
(3)热喷铝(锌)复合涂层:这是一种与热浸锌防腐蚀效果相当的长效防腐蚀方法。具体做法是先对钢构件表面作喷砂除锈,使其表面露出金属光泽并打毛。再用乙炔-氧焰将不断送出的铝(锌)丝融化,并用压缩空气吹附到钢构件表面,以形成蜂窝状的铝(锌)喷涂层(厚度约80μm~100μm)。最后用环氧树脂或氯丁橡胶漆等涂料填充毛细孔,以形成复合涂层。此法无法在管状构件的内壁施工,因而管状构件两端必须做气密性封闭,以使内壁不会腐蚀。这种工艺的优点是对构件尺寸适应性强,构件形状尺寸几乎不受限制。大到如葛洲坝的船闸也是用这种方法施工的。另一个优点则是这种工艺的热影响是局部的,受约束的,因而不会产生热变形。与热浸锌相比,这种方法的工业化程度较低,喷砂喷铝(锌)的劳动强度大,质量也易受操作者的情绪变化影响。
(4)涂层法:涂层法防腐蚀性一般不如长效防腐蚀方法(但目前氟碳涂料防腐蚀年限甚至可达50年)。所以用于室内钢结构或相对易于维护的室外钢结构较多。它一次成本低,但用于户外时维护成本较高。涂层法的施工的第一步是除锈。优质的涂层依赖于彻底的除锈。所以要求高的涂层一般多用喷砂喷丸除锈,露出金属的光泽,除去所有的锈迹和油污。现场施工的涂层可用手工除锈。涂层的选择要考虑周围的环境。不同的涂层对不同的腐蚀条件有不同的耐受性。涂层一般有底漆(层)和面漆(层)之分。底漆含粉料多,基料少。成膜粗糙,与钢材粘附力强,与面漆结合性好。面漆则基料多,成膜有光泽,能保护底漆不受大气腐蚀,并能抗风化。不同的涂料之间有相容与否的问题,前后选用不同涂料时要注意它们的相容性。涂层的施工要有适当的温度(5~38℃之间)和湿度(相对湿度不大于85%)。涂层的施工环境粉尘要少,构件表面不能有结露。涂装后4小时之内不得淋雨。涂层一般做4~5遍。干漆膜总厚度室外工程为150μm,室内工程为125μm,允许偏差为25μm.在海边或海上或是在有强烈腐蚀性的大气中,干漆膜总厚度可加厚为200~220μm。
(5)阴极保护法:在钢结构表面附加较活泼的金属取代钢材的腐蚀。常用于水下或地下结构。

2. 简述改善钢材可焊性的措施有哪些

改善高强度钢焊接性能的措施是多方面的,主要包括以下三个方面:一是钢内材的化学成分设计容时即充分考虑可焊性方面的要求,严格控制钢材的碳当量在一定的范围内,尽量减少钢材自身的脆性;二是从冶炼生产工艺上尽量降低甚至消除各种有害杂质如S、P、Sn、Sb、As等,并通过工艺措施控制夹杂物的形态;三是改善焊接工艺,避免造成很大的焊接应力,尽量减轻或避免脆性的发生。

3. 提高钢铁材料强度的途径

提高钢铁材料强度的途径:1、控制适度的含碳量,一般来说,高碳钢的强度大于低碳钢,但塑性降低;2、加入合金元素,如锰、钛等,合金化是提高金属强度的有效途径;3、控冷轧制,改善钢的金相组织,同一牌号的钢种,控制不同的冷却曲线,形成奥氏体组织的晶粒不同,钢的强度迥异;4、热处理,如:淬火、回火、调质等,可以得到不同轻度与韧性的钢,从而使机械零件或者工具性能各异。

4. 钢的热处理的主要方式有哪些

热处理是一种改善钢的机械性能的工艺方法,包括退火正火淬火回火和表面热处理等
1)退火退火是将钢加热到适当温度,保温一定时间,然后缓慢冷却(一般是随炉冷却)的热处理工艺退火的目的主要是降低硬度消除钢件中的应力等
2)正火正火是将钢加热到适当温度,保温一定时间,然后又静止的空气中冷却的热处理工艺正火实质上是退火的一种特殊形式,不同之处仅在于正火是采用在空气中冷却的方法,其冷却速度比退火稍快正火的目的是提高低碳钢和低碳合金钢的硬度改进钢件的力学性能
3)淬火淬火是将零件加热到一定温度(一般在850℃以上,视钢的品种而异),经保温后放入介质中快速冷却淬火的目的是提高钢的强度硬度和耐磨性淬火时常用的介质有油水和盐溶液等不同介质冷却速度不同,油中较慢,水中较快,盐溶液中更快冷却速度快时淬硬度的深度大,但变形和开裂的倾向也大
4)回火回火是在钢件经过淬火以后,再将其加热到适当温度,保温一定时间,然后在静止的空气中冷却的热处理工艺钢经过淬火后,强度和硬度虽然提高,但塑性和韧性降低因此,在淬火以后常需要进行回火,以保持钢的强度和硬度,并提高材料的塑性和韧性
根据回火时加热保温的温度不同,回火可分为低温回火中温回火和高温回火
5)表面热处理有些机械零件表面有较高的硬度和强度,而要求零件中心部分有足够的塑性和韧性,这时可进行表面热处理,如表面淬火和化学热处理

5. 使钢铁变得更加坚硬要经过什么方法去处理

※均质退火处理 简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。 ※完全退火处理 完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。 ※球化退火处理 球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。 ※软化退火处理 软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。 ※弛力退火处理 弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。弛力退火的热处理程序系将工件加热到A1点以下的适当温度,保持一段时间(不需像软化退火热处理那么久)后,徐缓冷却至室温。特别需要注意的是,加热时的速度要缓慢,尤其是大型对象或形状复杂的工件更要特别注意,否则弛力退火的成效会大打折扣。 ※正常化处理 正常化热处理有两个重要的功用,一是使工件结晶粒微细化而改善材料机械性质;另一个目的是调节轧延或铸造组织中碳化物的大小或分布状态,以利后续热处理时碳化物容易固溶于材质,以便提升材料切削性,并使材质均匀化。正常化热处理的热处理程序,系将工件加热至A3(亚共析钢)或Acm(过共析钢)点温度以上30℃至60℃的高温(此即为正常化温度)保持一段时间,材质成为均匀沃斯田体后,静置于空气中使之冷却。正常化时间的估算,可以每25mm厚度持温30分钟来估算需持温时间。正常化热处理又可分为二段正常化、恒温正常化及二次正常化等多种改良式正常化热处理。 ※淬火处理 淬火处理的主要目的是将钢材急速冷却以便获得硬度极大的麻田散体组织。钢的淬火处理有三个要件,缺一不可,分别是:(1)在沃斯田体区域内加热一段时间(即沃斯田体化);(2)冷却时要能避开Ar’(波来体)变态;及(3)使钢材产生麻田散体或变韧体而硬化。 淬火处理可分为两个程序来实施,一是加热;一是冷却。通常加热温度又称为淬火温度或沃斯田体化温度,依热处理钢材的不同而有所差异。亚共析钢的淬火温度在Ac3温度以上30℃至60℃范围内,共析钢及过共析钢的淬火温度则是加热至Ac1温度以上30℃至60℃温度范围内。冷却时要分两个阶段来冷却,钢从加热炉取出的钢件,一直冷却到Ar’’变态前的临界区域,要尽量迅速冷却;在Ar’’以下的温度区域则需采缓慢冷却的方式,否则易造成钢材的淬裂或淬火变形,此温度区域又称为危险区域。 ※回火处理 一般回火处理常继在淬火处理之后实施,以便消除淬火处理之不良影响而保留并发挥淬火之功效,其主要目的是使淬火生成的组织变态或析出更加安定(使形成回火麻田散体),减少残留应力并改善相关机械性质(提升材料延展性)。回火温度不同,会产生不同的机械强度与延展性组合,一般回火温度大多在600℃以下,因为更高的回火温度,任何钢材都会呈现急速软化的趋势,此时碳化物逐渐凝聚而球化、肥粒体会再结晶而成长为连续基地,是软化的主要原因。 ※回火脆性 回火处理要避开几个会产生回火脆性的温度范围,这些脆化温度范围视钢材种类而有所不同,包括:(1)270℃至350℃脆化(又称低温回火脆性或A脆性),大多数的碳钢及低合金钢,都在此温度范围内发生脆化现象;(2)400℃至550℃脆化,通常构造用合金钢在此温度范围内会产生脆化现象;(3)475℃脆化(特别指Cr含量超过13%的肥粒体系不锈钢);(4)500℃至570℃脆化,针对工具钢或高速钢在此温度范围加热,会析出分布均匀的碳化物,产生二次硬化效果,但也易导致脆性。 ※麻淬火处理 麻淬火处理的主要目的,在降低淬火时工件内外温度的巨大差异,并使于较低温度时工件内外一起产生麻田散体变态,可避免淬火破裂,并使淬火变形量降至最低而无损任何淬火硬度。其主要操作程序系将钢材淬入至温度在Ms点微上之热浴中,短暂持温使工件内外温度相同后,再提出空冷,使工件形成麻田散体变态的热处理方法。 ※麻回火处理 麻回火处理是将钢材淬入Ms与Mf温度范围之间的热浴,经过长时间持温后,使过冷合金沃斯田体一部分变态成麻田散体,一部分变态成下变韧体。此种热处理后,可不必再行回火处理,且可降低一般淬火回火之急剧程度;其最终组织为回火麻田散体及变韧体之混合,因此拥有高硬度和高韧性的组合。主要的缺点是需要保持恒温的时间甚久,在工业应用上较不经济。 ※沃斯回火处理 沃斯回火处理是一种较为特殊的热处理方法,主要程序是将钢材淬入温度介于S曲线鼻部与Ar’’(Ms点)温度之间的热浴,直到过冷沃斯田体完全变态成变韧体才取出空冷的一种热处理方法,亦称为变韧淬火,它不需要再行回火处理。沃斯回火的最大特色是可得高硬度、高韧性兼具的材质,一般而言,变态温度愈高,强硬度愈低,但可增进低温韧性;变态温度愈接近Ms温度,所得之强度、硬度皆大增,且伸长率及断面收缩率亦大增,颇适合小型工件之大量生产。

6. 提高金属材料强度的途径有哪些

1. 金属材料强度
金属及合金主要是以金属键合方式结合的晶体。完美金属的理论抗拉强度是指与结合键能(结合力和结合能)相关的材料物理量(双原子作用模型),其影响因素可以从该模型去考虑(如温度、键能、原子间距、点阵结合方式、原子尺寸、电负性电子浓度等,这些在金属材料学应该都有);
由于实际的金属及合金材料并非完美晶体,存在点、线、面缺陷(空位、位错、晶界相界等)或畸变,为此材料强度远低于它的理论强度。从缺陷的角度去考虑材料强化。工程及应用中最广的的屈服强度,该强度发生在材料的塑性变形紧密相关,可以从金属滑移及其机制去分析材料机制,(如位错机制等,阻碍位错运动的方式都为强化机制,如细晶强化、时效、固溶、形变强化)
2. 钢的强化方式:
钢一般指在铁碳相图中碳含量小于等于2.1%的一类铁合金;其强化方式可以结合理论进行推广。在考研相关问题中可以以有马氏体相变的钢为例进行述说。
结合化学成分、强化机制—固溶强化、相变强化、时效强化、奥氏体细晶强化,展开说明。
3.强度提高途径则根据各类影响因素去归纳(热处理、合金成分调整、形变硬化……)

7. 用什么方法热处理能提高钢材最高的硬度

淬火。

淬火是把钢加热到临界温度以上,保温一定时间,然后以大于临界冷却速度进行冷专却,从而获得以属马氏体为主的不平衡组织(也有根据需要获得贝氏体或保持单相奥氏体)的一种热处理工艺方法。淬火是钢热处理工艺中应用最为广泛的工种工艺方法。

淬火的目的:

1)提高金属成材或零件的机械性能。

例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。

2)改善某些特殊钢的材料性能或化学性能。

如提高不锈钢的耐蚀性,增加磁钢的永磁性等。

(7)改善钢铁材料性能的方法有哪些种扩展阅读

淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。

淬火工艺在现代机械制造工业得到广泛的应用。机械中重要零件,尤其在汽车、飞机、火箭中应用的钢件几乎都经过淬火处理。

为满足各种零件千差万别的技术要求,发展了各种淬火工艺。如,按接受处理的部位,有整体、局部淬火和表面淬火;按加热时相变是否完全,有完全淬火和不完全淬火(对于亚共析钢,该法又称亚临界淬火);按冷却时相变的内容,有分级淬火,等温淬火和欠速淬火等。

8. 强化钢的常见方法有哪些

强化钢的常见方法主要是热处理工艺:
整体热处理(退火、正火、淬火和回火)、表面热处理和化学热处理

金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,或者是使前道工序产生的内部应力得以释放,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火或称常化是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

淬火是将工件加热保温后,在水、油或其他无机盐溶液、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行较长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其他合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其他热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

退火、正火、淬火、回火、表面热处理和化学热处理 就是具体的强化方法呀!!机理也说了哈!

9. 强化金属材料的基本方法有哪些


1、固溶强化:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。
2、细晶强化:指的是通过细化晶粒而使金属材料力学性能提高的方法,工业上将通过细化晶粒以提高材料强度。
3、位错强化:是金属材料中最为有效的强化方式之一。在易于交滑移的金属中,应变量超过一定程度后,位错将排列成三维亚结构,当这些亚结构的位错墙呈松散的缠结形貌时,称为"胞状结构"。
4、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。
5、第二相强化:意思是当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。
6、弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。

10. 金属材料常用的强化方式及机理是什么

1、热处理:改变金属的晶粒的细度或合金中不同分子相对位置来增加晶格的反变形能力
2、冷作加工:破坏金属晶粒的晶格产生内应力用以反变形
3、渗入其他元素:产生内应力使金属增加反变形能力
常用的强化方式有四种
1、细晶强化:使金属材料力学性能提高的方法称为细晶强化,提高材料强度。
原理:通常金属是由许多晶粒组成的多晶体,单位体积内晶粒的数目越多,晶粒越细。在常温下的细晶粒比粗晶粒金属有更高的强度、硬度、塑性和韧性。因为细晶粒受到外力发生塑变可分散,塑变较均匀,应力集中较小。晶粒越细,晶界面积越大,晶界越曲折,不利于裂纹的扩展。
2、固溶强化:合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。
原理:晶格畸变增大了位错运动的阻力,使滑移难以进行,使合金固溶体的强度与硬度增加。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。
3、第二相强化:第二相以细小弥散的微粒均匀分布于基体相中产生显著的强化作用。
原理:交互作用阻碍了位碍运动,提高了合金的变形抗力。
4、加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。
原理:塑变时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。
拓展资料
金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。一般分为黑色金属和有色金属两种。黑色金属包括铁、铬、锰等。其中钢铁是基本的结构材料,称为“工业的骨骼”。
由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。
金属材料疲劳断裂的特点是:
⑴载荷应力是交变的;
⑵载荷的作用时间较长;
⑶断裂是瞬时发生的;
⑷无论是塑性材料还是脆性材料,在疲劳断裂区都是脆性的。
所以,疲劳断裂是工程上最常见、最危险的断裂形式。
金属材料的疲劳现象,按条件不同可分为下列几种:
⑴高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。
⑵低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
⑶热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。
⑷腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。
⑸接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
参考资料金属材料
网络金属材料强化方式

阅读全文

与改善钢铁材料性能的方法有哪些种相关的资料

热点内容
外架钢管与扣件的比例是多少钱 浏览:977
钢材运输费每公里每吨什么价格 浏览:837
钢板桩机械设备采用什么是 浏览:58
25不锈钢阀门多少钱 浏览:317
彩成不锈钢锅是什么材质 浏览:631
不锈钢盆上面的不干胶怎么弄才弄得下来 浏览:737
工地上用方管 浏览:923
XF318VAR是什么材质的钢材 浏览:49
螺纹钢每吨负差有多少 浏览:330
金属模具铸造光洁度能到多少 浏览:429
焊接危险因素有什么危害 浏览:155
铝合金和不锈钢桌凳哪个更结实 浏览:536
新乡医疗用品塑料模具多少钱 浏览:457
不锈钢锅热奶会糊是怎么回事 浏览:44
企业模具现状如何 浏览:50
广联达柱体钢筋如何修改 浏览:471
16的钢筋最大承载多少吨 浏览:391
不锈钢设备怎么恢复 浏览:778
钢构怎么做门 浏览:215
口碑好的不锈钢门窗多少钱 浏览:469