① 比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因
低碳钢(最典型的即是目前钢结构工程中常用的Q235钢)拉伸时出现明显屈服和颈专缩现象,断口周属围产生约45°滑移线;铸铁拉伸时不屈服也无颈缩现象,断口整齐。
原因:低碳钢拉伸破坏由最大切应力造成;铸铁拉伸破坏由最大拉应力造成。
解释:低碳钢抗剪强度低于抗拉强度,根据第三强度理论,单向应力状态下与第一主应力成45°的斜截面上产生最大切应力,且数值上τ=σ₁/2,故低碳钢拉伸时沿45°斜面剪切破坏;铸铁抗拉强度则很小,根据第一强度理论,直接沿横截面被拉断。
② 低碳钢和铸铁在压缩时的破坏原因
低碳钢是塑性材料,压缩时的弹性模量,比例极限,屈服极限和拉伸时大致相同,屈服极限后试件越压越扁,抗压能力不断提高,直至被压成饼状。
低碳钢压缩曲线也有明显的屈服点,但由于试样很短屈服阶段与拉伸相比短的多,进入强化阶段后塑性变形越来越大,因三向应力状态限制了端面附近的变形,因此试样的变形呈鼓形。
铸铁是脆性材料,被压缩时,试样受压时将沿与轴线成50度~55度倾角的斜截面发生错动而破坏。这个破坏是由剪力引起的。
铸铁受压时不存在拉应力的影响,随着载荷的增长,45°截面的最大剪应力能够不断增长,因而产生明显的塑性变形,使压缩曲线与拉伸曲线相比明显变弯。
(2)低碳钢和铸铁在拉伸破坏的主要原因是什么扩展阅读:
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好,可采用卷边、折弯、冲压等方法进行冷成形。这种钢还具有良好的焊接性。
低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低。
低碳钢由于强度较低,使用受到限制。适当增加碳钢中锰含量,并加入微量钒、钛、铌等合金元素,可大大提高钢的强度。若降低钢中碳含量并加入少量铝、少量硼和碳化物形成元素,则可得到超低碳贝氏体组够其强度很高,并保持较好的塑性和韧性。
③ 低碳钢和铸铁拉伸破坏时有什么特点并分别说明破坏原因~
低碳钢 韧性较强 不易破坏 但是硬度较低 铸铁硬度较高 韧性差 容易破坏 原因就是他们各自的含碳量不一样 前者含碳量较低 后者含碳量较高
④ 低碳钢和铸铁扭转时变形和破坏情况有何不同试分析其破坏原因。
1、断口的形状不同:
铸铁破坏时断口呈45º螺旋曲面,而低碳钢破坏时断口是与轴版线垂直的近似平权面。
2、断裂的过程不同:
低碳钢扭转时发生屈服,加工硬化,最后断裂。塑性变形量较大。铸铁扭转时几乎不发生塑性变形,直接断裂。
原因:铸铁是被45º方向上主应力所拉断,是由斜截面上的拉应力造成的,说明铸铁的抗拉强度较差;低碳钢是由横截面上的切应力造成的,说明低碳钢的抗剪强度较差。
(4)低碳钢和铸铁在拉伸破坏的主要原因是什么扩展阅读:
低碳钢和铸铁在拉伸试验中的性能和特点
低碳钢属于塑性材料,拉伸过程中有明显的屈服阶段,有明显的颈缩间断(又称断裂阶段)。(白口)铸铁属于脆性材料,拉伸过程中没有明显的屈服阶段,没有明显的颈缩间断。
低碳钢是典型的塑性材料,拉伸时会发生屈服,会产生很大的塑性变形,断裂前有明显的颈缩现象,拉断后断口呈凸凹状,而铸铁拉伸时没有屈服现象,变形也不明显,拉断后断口基本沿横截面,较粗糙。
⑤ 分析铸铁压缩破坏的原因,并与其拉伸作比较
铸铁为一种脆性变形试件。在强度极限拉伸时,铸铁在非常微小的变形情况下突然断裂回,可以听到答“嘣”的一声。断裂后几乎测不到残余变形。
低碳钢为塑性材料,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。
铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。
(5)低碳钢和铸铁在拉伸破坏的主要原因是什么扩展阅读:
铸铁的拉伸破坏发生在横截面上,是由最大拉应力造成的。压缩破坏发生在约50-55度斜截面上,是由最大切应力造成的。扭转破坏发生在45度螺旋面上,是由最大拉应力造成的。
低碳钢拉伸破坏的主要原因是最大切应力引起塑性屈服。引起铸铁断裂的主要原因是最大拉应力引起脆性断裂,这说明低碳钢的抗能力大于抗剪能力,而铸铁抗剪能力大于抗拉能力。
⑥ 比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因
低碳钢拉伸时发生颈缩,断口截面要小于实际截面,截面不平整,断口呈金属光泽.铸铁不会发生颈缩,断口截面比较平整,呈灰黑色.
⑦ 低碳钢拉伸破坏的原因
低碳钢拉伸破坏的原因
问题一:低碳钢和铸铁拉伸破坏的主要原因低碳钢压缩曲线也有明显的屈服点,但由于试样很短屈服阶段与拉伸相比短的多,进入强化阶段后塑性变形越来越大,因三向应力状态限制了端面附近的变形,因此试样的变形呈鼓形。随着变形的增长,承载面积、三向应力状态的影响越来越大,试样继续变形的抗力不断增长P-h曲线开始上翘,而且上翘程度越来越陡。最后,低碳钢只能压扁而不会发生断裂,因此低碳钢压缩时只有屈服极限sc而没有强度极限。
铸铁受压时不存在拉应力的影响,随着载荷的增长,45°截面的最大剪应力能够不断增长,因而产生明显的塑性变形,使压缩曲线与拉伸曲线相比明显变弯。试样变形后呈鼓状。最后试样在最大剪应力的作用下,沿45°~45°截面被剪断,断口平滑呈韧性。由于铸铁的抗剪能力大大超过其抗拉能力,所以其压缩强度极限bc远远大于其拉伸的强度极限。
问题二:低碳钢的拉伸和扭转的破坏原因是否一样拉伸为平断口,扭转为45度的螺旋断口。
拉伸时的破坏原因是拉应力
扭转时,由于低碳钢抗拉能力大于抗剪能力,所以剪应力先于拉应力达到最大值;故破坏原因是最大剪应力。
问题三:比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因低碳钢拉伸时发生颈缩,断口截面要小于实际截面,截面不平整,断口呈金属光泽。铸铁不会发生颈缩,断口截面比较平整,呈灰黑色。
问题四:低碳钢和铸铁拉伸破坏时有什么特点?并分别说明破坏原因~低碳钢碳含量百分比在0.5%以下,具有较低硬度,有良好韧性。确定他的延浮性和塑性,是塑性材料。抗拉能力高。
而铸铁的碳含量大于2%,碳已饱和独立存在铁中,碳颗粒悬浮在铁中,令铁的结构松散,成了脆性材料,韧性差,抗拉能力低。
问题五:低碳钢拉伸和扭转的断口形状是否一样?分析其破坏原因。拉伸为平断口,扭转为45度的螺储断口。
拉伸时的破坏原因是拉应力
扭转时,由于低碳钢抗拉能力大于抗剪能力,所以剪应力先于拉应力达到最大值;故破坏原因是最大剪应力。
问题六:低碳钢和铸铁在拉伸时的力学性能和破坏形式有何异同低碳钢属于塑性材料,拉伸过程中有明显的屈服阶段,有明显的颈缩间断(又称断裂阶段)。
铸铁属于脆性材料,拉伸过程中没有明显的屈服阶段,没有明显的颈缩间断
⑧ 急,低碳钢与铸铁在扭转破坏时断口不同,为什么
低碳钢拉伸和铸铁在扭转破坏时断裂方式不一样,拉伸的断裂方式是拉断,试件受正应力,表现为断裂截面收缩、断裂后试件总长大于原试件长度。
铸铁在扭转破坏使的断裂方式是剪断,试件受切应力,表现为试样表面的横向与纵向出现滑移线,最后沿横截面被剪断,断裂截面面积不变。
铸铁压缩破坏时,断口方位角约为55°-60°,在该截面上存在较大的切应力,所以,其破坏方式是剪断。扭转时,所受的外力也是剪力,所以,破坏方式与压缩时相同,为剪断。
低碳钢是韧性材料,铸铁是脆性材料
铸铁:
扭转试验——断口与轴线成45度,属于拉伸破坏
拉伸试验——断口是平面,属于拉伸破坏
压缩试验——45度碎裂,只能剪切破坏
脆性材料的抗剪切强度大于抗拉伸强度。弹性变形很小,基本无塑性变形,屈服强度与抗拉强度基本相同。
低碳钢:
扭转试验——变形很大,旋转很多圈,断口是平面,属于剪切破坏
拉伸试验——变形很大,断口缩颈后,端口有45度茬口,属于剪切破坏
压缩试验——呈腰鼓形塑性变形
韧性材料的抗剪切强度小于抗拉伸强度。弹性变形和塑性变形都很大。
低碳钢与铸铁的比较
1、低碳钢
低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,故又称软钢。
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。
因此,低碳钢在拉断时会表现出断裂截面收缩,断裂后试件的总长也会大于原试件的长度。
2、铸铁
含碳量在2%以上的铁碳合金为铸铁。工业用铸铁一般含碳量为2.5%~3.5%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。
除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。铸铁可分为:灰口铸铁。含碳量较高(2.7%~4.0%),白口铸铁,可锻铸铁,蠕墨铸铁等。
由于铸铁具有较强的耐磨性和柔韧性,在做扭转试验时或压缩试验时,属于拉伸破坏或剪切破坏。
⑨ 分析低碳钢、铸铁试件破坏的原因
低碳钢受到扭转时低碳钢则可能发生变形,原因是低碳钢内含有少量的碳,专其韧性比较好,低炭钢拉属伸实验达到屈服强度之后有个颈缩阶段,断面会比原料料细,扭的时候会扭出螺旋截面来,而铸铁内含有大量的碳,
铸铁试件受扭转时沿大约45度斜截面破坏,断口粗糙,此破坏是由斜截面上的拉应力造成的,说明铸铁的抗拉强度较差。
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好,可采用卷边、折弯、冲压等方法进行冷成形。
低碳钢一般轧成角钢、槽钢、工字钢、钢管、钢带或钢板,用于制作各种建筑构件、容器、箱体、炉体和农机具等。优质低碳钢轧成薄板,制作汽车驾驶室、发动机罩等深冲制品;
还轧成棒材,用于制作强度要求不高的机械零件,低碳钢在使用前一般不经热处理,碳含量在0.15%以上的经渗碳或氰化处理,用于要求表层温度高、耐磨性好的轴、轴套、链轮等零件。
低碳钢由于强度较低,使用受到限制。适当增加碳钢中锰含量,并加入微量钒、钛、铌等合金元素,可大大提高钢的强度。若降低钢中碳含量并加入少量铝、少量硼和碳化物形成元素,则可得到超低碳贝氏体组够其强度很高,并保持较好的塑性和韧性。
⑩ 以强度,塑性,断面形状与破坏原因几方面分析低碳钢和铸铁在拉伸试验的力学性能
低碳钢抗拉强度大,塑性材料,断面有颈缩现象,原因是拉力太大,超过抗拉强度被破坏。
铸铁抗拉强度弱,典型的脆性材料,断面与铸铁轴线大致成45度角(45~55°范围内),原因是铸铁的抗剪切能力小于抗拉伸强度,最终被剪断,沿45度方向正好是剪力最大的方向,超过抗剪切强度被切断。