㈠ 直缝高频电阻焊管成型工艺有哪些
1.在高频焊管生产过程中 ,如何确保产品质量符合技术标准的要求和顾客的需要 ,则要对钢管生产过程中影响产品质量的因素进行分析。通过对本公司 Φ76mm高频焊接钢管机组某月份不合格品的统计 ,认为在生产过程中影响钢管产品质量的要素有原材料、焊接工艺、轧辊调节、轧辊材质、设备故障、生产环境及其它原因等七个方面。其中原材料占 32 .44% ,焊接工艺占 24 .85 % ,轧辊调节占 22 .72 % ,三者相加占 80 .01 % ,是主要环节。而轧辊材质、设备故障、生产环境及其它原因等四个方面的要素 ,对钢管产品质量的影响占19.99% ,属相对次要环节。因此 ,在钢管生产过程中 ,应对原材料、焊接工艺和轧辊调节三个环节进行重点控制。
2 原材料对钢管焊接质量的影响 影响原材料质量的因素主要有钢带力学性能不稳定、钢带的表面缺陷及几何尺寸偏差大等三个方面 ,因此 ,应从这三个方面进行重点控制。
1)钢带的力学性能对钢管质量的影响焊接钢管常用的钢种为碳素结构钢 ,主要的牌号有 Q195、Q215、Q235 SPCC SS400 SPHC等多种 。钢带屈服点和抗拉强度过高 ,将造成钢带的成型困难 ,特别是管壁较厚时 ,材料的回弹力大 ,钢管在焊接时存在较大的变形应力 ,焊缝容易产生裂缝。当钢带的抗拉强度超过 635 MPa、伸长率低于 10 %时 ,钢带在焊接过程中焊缝易产生崩裂。当抗拉强度低于 30 0MPa时 ,钢带在成型过程中由于材质偏软 ,表面容易起皱纹。可见 ,材料的力学性能对钢管的质量影响很大 ,应从材料强度方面对钢管质量进行有效地控制。
)钢带表面缺陷对钢管质量的影响钢带表面缺陷常见的有镰刀弯、波浪形、纵剪啃边等几种 ,镰刀弯和波浪形一般出现在冷轧钢带轧制过程中 ,是由压下量控制不当造成的。在钢管成型过程中 ,镰刀弯和波浪形会引起带钢的跑偏或翻转 ,容易使钢管焊缝产生搭焊 ,影响钢管的质量。钢带的啃边 (即钢带边缘呈现锯齿状凹凸不平的现象 ) ,一般出现在纵剪带上 ,产生原因是纵剪机圆盘刀刃磨钝或不锋利造成的。由于钢带的啃边 ,时时出现局部缺肉 ,使钢带在焊接时易产生裂纹、裂缝而影响焊缝质量的稳定性。
3)钢带几何尺寸对钢管质量的影响当钢带的宽度小于允许偏差时 ,焊接钢管时的挤压力减小 ,使得钢管焊缝处焊接不牢固 ,出现裂缝或是开口管 ;当钢带的宽度大于允许偏差时 ,焊接钢管时的挤压力增加 ,在钢管焊缝处出现尖嘴、搭焊或毛刺等焊接缺陷。所以 ,钢带宽度的波动 ,不但影响了钢管外径的精度 ,而且严重影响了钢管的表面质量。对要求同一断面壁厚差不超过规定值的钢管 ,即要求壁厚均匀程度高的钢管 ,钢带厚度的波动 ,会将同一卷钢带厚度差超出的允许值转移到成品钢管的壁厚差 ,使大批钢管厚度超出允许偏差而判废。厚度的波动不仅影响成品钢管的厚度精度 ,同时 ,由于钢带的厚薄不一 ,使钢管在焊接时 ,挤压力和焊接温度不稳定 ,造成了钢管焊接时焊缝质量不稳定。此外 ,由于钢材内部存在着夹层、杂质、沙眼等材料缺陷 ,也是影响钢管质量的一个重要因素。因此 ,在钢带焊接前 ,要检查每卷钢带的表面质量和几何尺寸 ,对钢带质量不符合标准要求的 ,不要进行生产 ,以免造成不必要的损失。
3 高频焊接对钢管质量的影响 在钢管高频焊接过程中 ,焊接工艺及工艺参数的控制、感应圈和阻抗器位置的放置等对钢管焊缝的焊接质量影响很大。
1) 钢管焊缝间隙的控制钢带进入焊管机组经成型辊成型、导向辊定向后 ,形成有开口间隙的圆形钢管管坯 ,调整挤压辊的挤压量 ,使得焊缝间隙控制在 1~ 3mm,并使焊口两端保持齐平。焊缝间隙控制得过大 ,会使焊缝焊接不良而产生未熔合或开裂 ;焊缝间隙控制得过小 ,由于热量过大 ,造成焊缝烧损 ,熔化金属飞溅 ,影响焊缝的焊接质量。
2) 高频感应圈位置的调控感应圈应放置在与钢管同一中心线上 ,感应圈前端距挤压辊中心线的距离 ,在不烧损挤压辊的前提下 ,应视钢管的规格而尽量接近。若感应圈距挤压辊较远时 ,有效加热时间较长 ,热影响区宽 ,使得钢管焊缝的强度下降或未焊透 ;反之感应圈易烧毁挤压辊。
3) 阻抗器位置的调控阻抗器是一个或一组焊管专用磁棒 ,阻抗器的截面积通常应不小于钢管内径截面积的 70 % ,其作用是使感应圈、管坯焊缝边缘与磁棒形成一个电磁感应回路 ,产生邻近效应 ,涡流热量集中在管坯焊缝边缘附近 ,使管坯边缘加热到焊接温度。阻抗器应放置在 V形区加热段 ,且前端在挤压辊中心位置处 ,使其中心线与管筒中心线一致。如阻抗器位置放置的不好 ,影响焊管的焊接速度和焊接质量 ,使钢管产生裂纹。
4)高频焊接工艺参数——输入热量的控制高频电源输入给钢管焊缝部位的热量称为输入热量。将电能转换成热能时 ,其输入热量的公式为 :
Q=KI2 Rt (1)
式中 Q—输入管坯的热量 ;K—能量转换效率 ; I—焊接电流 ;R—回路阻抗 ; t—加热时间。
加热时间 :t=Lv (2)
式中 L—感应圈或电极头前端至挤压辊的中心距 ;v—焊接速度。
当高频输入的热量不足且焊接速度过快时 ,使得被加热的管体边缘达不到焊接的温度 ,钢铁仍保持其固态组织而焊接不上 ,形成了未熔合或未焊透的裂纹 ;当高频输入热量过大且焊接速度过慢时 ,使得被加热的管体边缘超过了焊接温度 ,容易产生过热甚至过烧 ,使焊缝击穿 ,造成金属飞溅而形成缩孔。从公式 (1)、(2)中可知 ,可以通过调整高频焊接电流 (电压 )或调整焊接速度的方法 ,来控制高频输入热量的大小 ,从而使钢管的焊缝既要焊透又不焊穿 ,获得焊接质量优良的钢管
4 轧辊调节对钢管质量的影响 从钢管废品因果分析图可看出 ,轧辊调节是属钢管的操作工艺。在生产过程中 ,轧辊损坏或磨损严重时 ,在机组上需要更换部分轧辊 ,或某个品种连续生产了足够的数量 ,需要更换整套的轧辊。这时都应对轧辊进行调节 ,以获得良好的钢管质量。如轧辊调节得不好 ,易造成钢管管缝的扭转、搭焊、边缘波浪、鼓包及管体表面有压痕或划伤 ,钢管椭圆度大等缺陷 ,因此 ,换辊时应掌握轧辊调节的技巧。
1 )更换钢管规格 ,一般都对整套轧辊进行更换。轧辊调节的方法是 :用钢丝从机组入口到出口拉一条中心线 ,进行调整 ,使各架孔型在一条中心线上 ,并使成型底线符合技术要求。更换轧辊规格后 ,首先对成型辊、导向辊、挤压辊、定径辊作一次全面的调节 ,然后重点对成型辊的封闭孔型、导向辊、挤压辊调节。
2 )导向辊的作用是控制钢管的管缝方向和管坯底线高度 ,缓解边缘延伸 ,控制管坯边缘回弹 ,保证管缝平直而不扭转进入挤压辊。如导向辊调节不好 ,在钢管的焊接过程中 ,易造成钢管管缝的扭转、搭焊、边缘波浪等焊接缺陷。
3 )挤压辊是焊管机组的关键设备 ,其作用是将边缘被加热到焊接温度的管体在挤压辊的挤压力作用下完成压力焊接。在生产过程中 ,要控制挤压辊开口角的大小。挤压力过小时 ,焊缝金属强度下降 ,受力后会产生开裂 ;挤压力过大时 ,降低焊接强度 ,而且使外毛刺量增加 ,易造成搭焊等焊接缺陷。
4 )在焊管机组慢速起动的过程中 ,应密切注意各部位轧辊的转动情况 ,随时调节轧辊 ,以确保焊管的焊接质量和工艺尺寸符合规定的要求。
㈡ 高频焊管生产线中影响钢管质量的因素有哪些
在高频焊管生产过程中 ,如何确保产品质量符合技术标准的要求和顾客的需要 ,则要对钢管生产过程中影响产品质量的因素进行分析.通过对本公司 Φ76mm高频焊接钢管机组某月份不合格品的统计 ,认为在生产过程中影响钢管产品质量的要素有原材料、焊接工艺、轧辊调节、轧辊材质、设备故障、生产环境及其它原因等七个方面.其中原材料占 32 .44% ,焊接工艺占 24 .85 % ,轧辊调节占 22 .72 % ,三者相加占 80 .01 % ,是主要环节.而轧辊材质、设备故障、生产环境及其它原因等四个方面的要素 ,对钢管产品质量的影响占19.99% ,属相对次要环节.因此 ,在钢管生产过程中 ,应对原材料、焊接工艺和轧辊调节三个环节进行重点控制.
2 原材料对钢管焊接质量的影响 影响原材料质量的因素主要有钢带力学性能不稳定、钢带的表面缺陷及几何尺寸偏差大等三个方面 ,因此 ,应从这三个方面进行重点控制.
1)钢带的力学性能对钢管质量的影响焊接钢管常用的钢种为碳素结构钢 ,主要的牌号有 Q195、Q215、Q235 SPCC SS400 SPHC等多种 .钢带屈服点和抗拉强度过高 ,将造成钢带的成型困难 ,特别是管壁较厚时 ,材料的回弹力大 ,钢管在焊接时存在较大的变形应力 ,焊缝容易产生裂缝.当钢带的抗拉强度超过 635 MPa、伸长率低于 10 %时 ,钢带在焊接过程中焊缝易产生崩裂.当抗拉强度低于 30 0MPa时 ,钢带在成型过程中由于材质偏软 ,表面容易起皱纹.可见 ,材料的力学性能对钢管的质量影响很大 ,应从材料强度方面对钢管质量进行有效地控制.
2)钢带表面缺陷对钢管质量的影响钢带表面缺陷常见的有镰刀弯、波浪形、纵剪啃边等几种 ,镰刀弯和波浪形一般出现在冷轧钢带轧制过程中 ,是由压下量控制不当造成的.在钢管成型过程中 ,镰刀弯和波浪形会引起带钢的跑偏或翻转 ,容易使钢管焊缝产生搭焊 ,影响钢管的质量.钢带的啃边 (即钢带边缘呈现锯齿状凹凸不平的现象 ) ,一般出现在纵剪带上 ,产生
请看你的私信里或我的资料里 。联系方法,腰巴贰似溜捂叄零捂零贰
㈢ 求不锈钢制管机的工作(成型)原理和各个模具的性能和调整方法,
不锈钢工业制管机
使用说明书
INSTRUCTION
机组型号:
出厂编号:
出厂日期:200 年 月 日
电话:86-757-81162186
传真:86-757-81162189
E-mail: [email protected]
目录
一. 简介…………………………………………….2
二. 用途与特性…………………………………….3
三. 成型机结构特点及作用保养………………….4
四. 吊装及安装…………………………………….6
五. 机型分类及组成……………………………….6
六. 机组结构及主要成型参数…………………….8
七. 成型调整………………………………………12
八. 制管机常见故障及检查排除方法……………14
九. 保修条例及合格证……………………………16
十.机械图片…………………………………….. 18
一.简介
“百冠”牌焊管机械.模具
不锈钢焊管技术的革命
不锈钢焊管过程中经常发生拉伤、起皱、指甲纹、鱼鳞纹、机械纹、手感、矩管管材成形面不平、角度不尖、凹角、圆管失圆、方管不方等缺陷。多年来,这些缺陷一直困扰着业内人士.也是模具行业最难攻克的难题.百冠人经过多年的潜心研究及实践,现在终于生产出了” 百冠”牌高品质机械模具,解决了这些问题,给业内人士带来了福音.
特别推荐:针对目前市场上201钢板硬度过硬,管材抛光后不圆的现象, 百冠人经过半年多的精心研究,生产出的百冠牌模具杜绝了此类现象的发生,给广大201用户带来了福音.
“百冠”牌模具----------更加合理的成型原理
超常规的成型面硬度
从而不仅解决了制管中的缺陷,更使其寿命较普通模具提高了很多倍. “百冠”牌模具材料Cr12MoV,硬度可达到61~63HRC.按理论计算“百冠”牌模具三年可不需返修,大大地减少了用户的麻烦和返修成本,获得了用户的广泛好评.
百冠科技有限公司属佛山市高新技术企业,多年来致力于不锈钢焊管模具、不锈钢装饰(工业、复合)焊管机、抛光机、平口机、压花机、内整平装置、在线光亮固溶退火设备及其它不锈钢生产配套设备的研发、生产和国内外销售,对外承接OEM/ODM订单合作。
“百冠”系列产品经过20 多位资深设计师、工程师多年的潜心研究和改良。“百冠”牌焊(制)管机采用超薄设计,重型装置,最薄可焊至0.15mm,工业制管机最厚可焊10.00mm,工艺水平位处同行前列; “百冠”模具,解决了在制管过程中产生的拉伤、起皱、指纹、机械纹、对角、凹角等现象,实现了模具上机后维修率为零。
百冠人奉行“以技取胜、精益求精”的企业理念,以 “科学、严谨、创新”的工作方式,开拓进取;以敏锐的市场洞察力,猎取业内最新资讯,以市场需求为导向,以客户为中心;以一流的产品、一流的服务为客户提供优质可靠产品,百冠热烈欢迎社会各界人士加盟,共创美好未来!
二.用途与特性
一.概述:
欢迎您使用“百冠“牌不锈钢焊管机,我公司是佛山最大的不锈钢焊管机及不锈钢焊管模具,抛光机,复合管机及其他配套设备不锈钢生产线的专业生产厂家之一。百冠人经过多年的不懈努力和经心研究,生产出的“百冠“牌制管机及模具,解决了在制管中经常发生的拉伤,起皱,指甲纹等现象,从而使“保林”牌制管机及模具在市场上占重要的地位。百冠人以“科学,严谨,创新”的工作方式,奉行“以技取胜,精益求精”的企业理念,不断开拓进取。以敏锐的市场触觉探索业内最新资讯,以市场需求为导向,以客户为中心,用一流的产品,一流的服务为不锈钢行业的发展和繁荣做出更大的贡献,并热忱欢迎社会各界人士来电咨询洽谈业务。
二.用途与特性
BG系列工业制管机主要用于工业用不锈钢型材(圆管,方管,异型管,复合管)连续成型工艺,经过拆卷,清洗,成型,氩弧焊接,焊缝打磨,内整平,定径校直,光亮固溶化处理,定径校直,定尺切割等工序生产而成。这种工艺方法的特点是连续生产,效率高,材料浪费少,生产成本低。
BG系列制管机生产线主要由上料架,主机,切割机,成品架四大部件组成。
主机由床身,进料导锟,平锟支架,焊缝打磨头,校直架,蜗轮减速箱,主拖动电机及电控系统,水冷系统等组成。
三.成型机结构特点及使用保养
一.结构特点:
1. 本机组电器配制,采用变频调速。
2. 采用变频调速技术,调速灵敏高,调速平稳,噪音小,功率损失少。
3. 成型机与定径由一台电机集中驱动,结构紧凑,维护简单,吊运,安装,操作方便。
4. 采用十字架万向节联轴器传动,传动扭钜大,寿命长,整齐,美观,轻便。
5. 水平机架是传动机架,经蜗轮蜗杆箱与联轴器传动。在蜗轮蜗杆箱与电机之间设有4档变速箱(1个倒档),使机组操作更方便,轧锟运动更平稳。
6. 水平机架为二锟式的侧出锟式支架,当需要换锟时,松开外侧支座固定螺栓,拉出外侧支座,侧面换锟,简单方便。机架的压下调整两侧单独进行,调整灵活,方便,精度高。
7. 立锟在机座内可以同时或单独作水平方向的调整,也可以分别作垂直方向的调整,比较方便,轧锟的轴承采用滚动轴承。
8. 上料架采用可旋转的平行四连杆悬臂双卷筒机构,可以在机组工作过程中上卷,接带,这样可以减少准备作业时间,使机组不设活套装置也能连续生产。
9. 前两架焊缝打磨机主轴中心线与轧制中心线呈+/-45夹角并可调整,从交错的两个方向对焊缝进行抛磨,后面一架焊缝打磨机主轴中心与轧制中心线呈90度夹角对焊缝进行直磨,使抛磨效果更佳。
二.保养检查
成型机的保养检查因使用频度,环境条件等不同而有不同的内容(见表一)。表一为保养检查的重点是定期检查,并准备足够消耗 用品,确保作业和生产的正常进行。
表一:成型机的保养检查标准
检查部位
检查周期
保养检查内容
驱动装置,轴承等。
1/天
驱动装置供油状态
轧锟轴承部位供油状态
万向节
2-3提/次
万向节头供脂状态
供油脂部位
周/次
月/次
(1) 变速箱内油量
(2) 蜗轮箱内油量
(3) 冷却系统供给状态
(4) 检查油箱的油清洁度,乳化状况,冷却液的清洁度,发臭状况(若有异常,检查下列各处,换油)
1. 油封有无破损
2. 齿轮有无损坏
3. 管路有无泄露
轧锟
月/次
(1) 轧锟周围的检查
1.检查轧锟锁紧螺杆部位的损伤
2.锟轴表面的损伤及磨损
锟轴驱动装置
年/次
(2)检查锟轴的弯曲
锟轴驱动装置
周/次
轴承的升温
锟轴驱动装置
2-3/周
蜗轮的磨损
锟轴驱动装置
年/次
轴承的磨损
四.吊运及安装
成型机需用吊车,铲车等吊装起运设备或滚杆搬运到指定地点。如用吊车时,吊车钢索必须经负5吨以上的重量。吊运时将钢索挂上四个吊钩即可。吊运时要注意不使钢索与设备直接接触以免损坏油漆及部件。
为了使成型机工作平稳和精确,成型机必须安置在坚实的基础上,成型机在地脚螺栓之前,必须用水平仪在纵横两个方向上调整,使成型机工作台水平,并保证前后床身的平锟支座在同一直线上,工作台水平误差不大于0.04mm,平锟支座位置误差不大于0.01mm。调整符合规范后垫好斜铁,并均匀地旋紧地脚螺栓,然后在机座周围浇灌混凝土固定。
五.机型分类及组成
一.机型分类:
目前我公司生产的不锈钢工业焊管种类有Ф30型,Ф40型,Ф50型,Ф60型,Ф80型,Ф90型,Ф100型,同时可根据客户要求进行设计生产。
二.机组组成:
1.放料架:采用双工位轴承座可旋转式设计,配置刹车轮。
机型
钢带内孔尺寸
钢带外径尺寸
钢带最大承载量
Ф30型
Ф330-510mm
Ф1700mm以下
2.5T
Ф40型,小40型
Ф330-520mm
Ф1800mm以下
3.0T
Ф50型(单工位)
Ф410-530mm
Ф1800mm以下
3.5T
Ф60型(单工位)
Ф410-530mm
Ф1850mm以下
5T
Ф90型(单工位)
Ф420-540mm
Ф1850mm以下
8T
2.主机部分:由成型组,打磨组,定径段组成。
(1)成型组;由6组水平牌坊及9组立牌组成(40,50,60机组)(排布:VHVHVHVVVHVHVHVVH)。其中后1组立牌及2组卧牌为焊接段。
(2)打磨组:由3个磨头(电机采用3KW两级电机)。磨头采用双立柱导轨式设计,底座可旋转多角度打磨焊缝(VV)。
(3)定径段:由4组水平牌坊及4组立牌组成(30,40,50机组)及2个校直架组成(排布:HVHVHVHTH1TH2V)
3.切割台:采用由金属锯自动切割,电机采用3-7.5KW两级电机。
4.卸料架:由气缸控制自动卸料,定尺寸长度:3 ~8.
六,机组结构及主要成型参数
1. 制管机的制管范围:
机型
壁厚
圆管
方/距管
Ф30型
0.3~2.0mm
Ф5~Ф25 mm
F10*10-20*20
Ф40型
0.3~3.0mm
Ф12~Ф50.8 mm
F10X10-F40X40
Ф50型
0.4~3.5mm
Ф31.8~Ф76 mm
F25X25-F75X45
Ф60型
0.6~4.5mm
Ф50.8~Ф114 mm
F38X38-F89X89
Ф100型
0.9~8.0mm
Ф129~Ф219 mm
F90X90-F180X180
2.定尺寸长度:3~8m 定尺精度: 〈8mm
3.制管机速度:3~18m/min
4.主机功率:双电机
Ф30型: 4KW
Ф40型: 5.5KW
Ф50型: 7.5KW
Ф60型: 11KW
Ф70型: 18.5KW
Ф80型: 22KW
Ф90型: 35KW
Ф100型:37KW
注:本机组有两种电器配制,一种是采用交流电磁调速,一种是采用变频调速。
5. 打磨头电机功率:3KW(30, 40, 50 ,60 ,70型),4KW(80,90,100型)。
6. 切割机电机功率:3KW(30,40,50,60型),5.5KW(70,80,90,100型)
7.主机外形尺寸:长(mm)*宽(mm)*高(mm)
Ф30型:5300*1000*1750 Ф40型:7300*1110*1750
Ф50型: 8700*1210*1800 Ф60型:12000*1320*1800
8. 主机重量: Ф30型:约5500Kg Ф40型:约6500Kg
Ф50型: 约7500Kg Ф60型:约10000Kg
图一:30~40电机电气接线图与50~60机电气接线图
图二 :50./.60机控制电气线路图
图三:切割机电气接线图
七.成型调整
带料通过成型机成型,要求成型为具有良好质量的管筒,供给焊机焊接成圆管,成型好坏,对焊接质量有直接的影响,在一定设备条件下,正确的调整操作是成型质量好坏的决定因素。
1. 对成型质量的基本要求包括:
A. 成型后的管坯具有正确的圆管型;
B. 管筒尺寸符合孔型设计的需要;
C. 管缝两边缘平直,没有高低塔焊;
D. 管缝没有扭转现象;
E. 管缝两综缘没有波浪和鼓包现象;
F. 调整开口角度达到所需要的程度(2~6度)
G. 管坯没有轧锟压伤和严重划伤等表面缺陷。
2. 成型机的调整装整
① 平锟调整
A. 压下调整:通过转动轴承座压下螺丝的螺母,而使该压下螺杆升降,带动轴承升降,两轴承座独立调整。
B. 轴向调整
3. 在下轴承的一端留有定位面,用于定位下锟的位置。在上锟轴的两端各安装一组螺母,通过旋转螺母使上锟移动,达到轴向调节的目的。
(2).立锟调整
A. 立锟锟轴的横向调整:横向调整采用两套螺旋副调整,一套螺旋副调整的立锟锟轴的横向位置,另一套螺旋副同步调整两立锟的开闭。
B. 立锟锟轴高度调整:松开立锟锟轴与滑块间锁紧螺母旋动立锟锟轴,使之升高或下降,调好扣将螺母锁紧,两立锟锟轴单独调节。
4. 成型调整的基本原则
A. 正确调整成型管坯的底线
成型管坯的底线由轧锟及设备本身保证。
B. 正确调整各机架孔型中心在一条直线上
下锟通过定位套与下锟轴位面定位,上锟通过下锟定位面找正定位。
C. 正确调整轧锟的水平位置
从横向检查成型各机架水平锟的上锟中心线是否水平,是否有一头高,一头低的倾斜现象,通过压下装置调整水平。
D. 正确调整各机架的锟轴
按照孔型和工艺规程调整各水平锟和立锟缝符合需要。锟缝过大,则造成变形不充分,钢带在孔型内左右滑动和扭转,锟缝过小使成型负荷增加,机体损坏。
E.检查轧锟直径,孔型尺寸,形状是否符合规定,检查轧锟表面是否光洁有无缺陷。
F.轧锟安装固定要紧固
轧锟安装固定要紧固,不允许有轴向串动和径向跳动,检查轴承是否损坏,松动,检查机架在床身的固定是否牢固,机盖和机座的连接是否坚固。
G.轧锟是否转动灵活
检查轴承是否完好,间隙是否合适,轧锟转动是否灵活。
5. 正常生产时的检查
正常生产时就经常检查:电机,变速箱和蜗轮箱是否过热,运转是否正常,万向节,联轴器是否正常,有无损坏,乳化液浓度是否合适,各机架轧锟是否得到充分冷却,管坯运动情况,成型质量是否良好,随时调整消除成型过程中所产生的缺陷和故障。
6. 成型缺陷及消除
成型管坯常见的缺陷有: 错位,扭转,鼓包,压痕或划伤等。
八.制管机常见故障及排除方法
故障
可能的原因
排除的方法
1.主电机的跳停
1. 负荷过大电机发热
2.继电器电流量控制太小
3. 电机出风口通风不好
4. 档位太高
5. 线路老化漏电
1. 检查机台转动,看看是否有某一部位卡死及波箱油位是否太高或没有油
2. 打开电箱将该电机的保护继电器电流调大一点
3.查看电机出风口,看是否有杂物堵住出风口
4. 做大管厚管时,档位应放至1档或2档,甚至倒档
5.检查线路如有问题给更换
2.磨头高速箱发热磨头振动大
1. 长时间运转而断油
2. 千页轮安装偏心
3. 打磨轴弯曲
4. 磨头拖板调节栓没上紧
5. 电机轴承间隙大或风页破损
1. 用清洁柴油对其进行清洗后
加上20#机油
2. 检查千页轮看内孔是否过大
3. 拆下打磨轴进行校正或更换
4. 检查磨头拖板上的四个调节螺栓是
否上紧检查电机后端风页看是否破损
3.磨头上下调节时过紧
1.上下调节丝杆弯曲变形
2. 两根导柱生锈
3. 上压条螺纹磨损
1. 拆下校正更换
2. 用柴油清洗后用砂纸进行
打磨后加上清洁黄油
4.主电机运转,传动部分不转
1.加档变速箱,损坏
2.减速箱之间连接链轮磨损
3.链轮内的键磨损
1. 检查变速箱看是否乱档
2. 检查变速箱输出端,看花键是否磨损
3. 检查链轮链条,如有磨损给予更换
5.减速箱发热,油封开裂
1.减速箱内油太多
2.对应的水平锟压的太紧
3.两边没有压平
1. 打开放油孔将油放掉一部分
2. 检查一下水平锟的饿下压情况,
两滑块一定要平
6.切割台夹具不夹或夹松,料架气缸不动作
夹具拖板进了切割炭气缸动作不灵,气压不稳
1. 用柴油清洗夹具拖板
2. 检查空压机气路,气压是否正常,气表压力是否达到要求(0.6),压力不够,可将气表上方黑色螺帽向上拉起向左转,将压力调好,压力内要加上气缸专用油且定期排水。
3. 检查气路是否装错
4. 检查电磁阀上方线圈是否烧坏
5. 检查行程开关是否动作
6. 检查相应气缸调节缸体上的两个铜螺栓。
九:保修服务规定
一:保修期限承诺:
产品
保修期限(自购机械之日起)
国家三包政策
BL售后规定
不锈钢制管机
1年免费保修
1年免费保修
特殊说明:
①上述服务承诺仅适用于2008年1月起生产之制管机系列产品;
②保修凭据:依产品购买发票或随机保修卡说明书为凭据实施保修。若未有购机发票或保修卡,说明书,我司均依产品交货日期为准计算保修期。
二:保修服务规定:
1. 服务实施基准:
遵循2002年3月27日国家质量监督检验检疫总局会议和2002年6月27日信息产业部的10次会议审核通过的《机械商品修理更换退货责任规定》
2. 全国服务:
百冠机械实行全国范围联保,无论在中华人民共和国境内(不包括港、澳、台地区)何处购买的百冠机械,出现问题需要更换或维修时,离客户最近的代销点均可提供服务。
3. 保修凭据:
参照国家三包政策执行在保修期内,凡属产品本身质量引起的故障,顾客凭已填写完整的保修卡正本
或购机发票,可享受BL产品承诺之免费保修服务,若无上述凭据,只能依产品生产日期为准,享受免
费保修服务。 请妥善保管购百冠机械发票或保修卡说明书,遗失不补!
4. 有偿服务规定:
参照国家三包规定:属于下列情况之一者,不实行三包,但可以实行收费维修:
4.1超过三包有效期的。
4.2未按产品使用说明书的要求使用、维护、保管而造成损坏的。
4.3非承担三包修理者拆动造成的损坏的。
4.4无有效三包凭证或有效发票的(有效三包凭证为随机保修卡或购机发票)。
4.5擅自涂改三包凭证的。
4.6三包凭证上的产品型号或编号与商品实物不相符合的。
4.7无厂名、厂址、生产日期、产品合格证的。
4.8因不可抗力造成损坏的。
以上只供参考,具体规定以BL公司现行规定为基准。
三:上门服务规定:
BL可向消费者提供局部城市限定范围的上门服务,分有偿上门与无偿上门服务两种。
1. 无偿上门服务规定(限定范围内:国内):
新制管机,抛光机,模具等保林公司的产品,在国内都有无偿上门服务;不收任何费用。
2. 生产者应当承担以下责任和义务:
(一)不锈钢机械商品应当随机配有产品的中文使用说明;产品使用说明应按照国家标准GB5296.1
《消费品 使用说明》的规定编写;明示基本功能的操作程序;三包凭证应当符合本规定《机械商品三包凭证》的要求。
(二)应当自行设置或者指定具有维修资质的修理单位负责三包有效期内的修理,并提供修理者单位的名称、 地址、联系电话等;修理者名称、地址、联系电话撤销或者变更的,应当及时告知消费者;
(三)按有关修理代理合同或者协议的约定,提供合格的、足够的修理配件,满足维修的需求;
(四)按有关修理代理合同或者协议的约定,提供三包有效期内发生的修理费用;维修费用在产品流通的各个环节不得截留,应当全部支付给修理者;
(五)按有关修理代理合同或者协议的约定,提供技术资料,技术培训等技术支持;
(六)妥善处理消费者的投诉、查询,并及时提供咨询服务。
四:本规定自2008年1月1日起实行。
十.机械图片
2.50.60制管机总图
3.40制管机总图
㈣ 万急:高频焊接原理
焊管高频焊接原理
作者:江南五里湖
高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。
作为焊管生产制造者,必须深刻了解高频焊接的基本原理;了解高频焊接设备的结构和工作原理;了解高频焊接质量控制的要点。
1 高频焊接的基本原理
所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?
集肤效应 是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。
邻近效应 是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。
这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。
2 高频焊接设备的结构和工作原理
了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。
高频发生器 过去的焊管机组上使用高频发生器是三回路的:高频发电机组;固体变频器;电子高频振荡器,后来基本上都改进为单回路的了。调节高频振荡器输出功率的方法有多种,如自耦变压器,电抗法,晶闸管法等。
馈电装置 这是为了向管子传送高频电流用的,包括电极触头,感应圈和阻抗器。接触焊中一般采用耐磨的铜钨合金的电极触头,感应焊中采用的是紫铜制的感应圈。阻抗器的主要元件是磁心,它的作用是增加管子表面的感抗,以减少无效电流,提高焊接速度。阻抗器的磁心采用铁氧体,要求它的居里点温度不低于310°,居里点温度是磁心的重要指标,居里点温度越高,就能靠得离焊缝越近,靠得越近,焊接效率也越高。
近年来,世界上一些大公司开始采用了固态模块式结构,大大提高了焊接可靠性,保证了焊接质量。如EFD公司设计的WELDAC G2 800高频焊机由以下部分组成:整流及控制单元(CRU),逆变器,匹配及补偿单元(IMC),CRU与IMC间的直流电缆,IMC到线圈或接触组件。
机器的两个主要部分是CRU及IMC。CRU包括一个带有主隔绝开关及一个全桥二极管整流器的整流部分(它把交流电转换为直流电),一个带有控制装置及外部控制设备界面的控制器。IMC包括逆变器模块,一个匹配变压器以及一个用于为感应线圈提供必需的无功功率的电容组。
主供电电压(3相480V),通过主隔绝开关被送到主整流器中。在主整流器中,主电压被转换为640V的直流电并且通过母线与主直流线缆相连接。直流电通过由数个并联电缆组成的直流电输送线被送到IMC。DC线缆在IMC单元母线上终止。逆变部分的逆变器模块通过高速直流保险同DC母线以并联方式连接在一起。DC电容也与DC母线连接在一起。
每个逆变器模块构成一个全桥IGBT三极管逆变器。三极管的驱动电路则在逆变器模块内的一个印刷电路板上。直流电由逆变器变为高频交流电。根据具体的负载,交流电的频率范围在100-150KH范围之间。为根据负载对逆变器进行调整,所有逆变器都以并联方式同匹配变压器连接。变压器有数个并联的主绕组,及一个副绕组。变压器的匝数比是固定的。
输出电容由数个并联电容模块组成。电容器以串联方式同感应线圈相连接,因此输出电路也是串联补偿的。电容器的作用是根据感应线圈对无功功率的要求进行补偿,及通过此补偿来使输出电路的共振频率达到所要求的数值。
频率控制系统被设计用来使三极管始终工作在系统的共振频率上。共振频率通过测量输出电流的频率确定。此频率随即被用来作为开通三极管的时基信号。三极管驱动卡向每个逆变器模块上的每个三极管发送信号来控制三极管何时开通,何时关断。
感应加热系统的输出功率控制是通过控制逆变器的输出电流来控制的。上述控制是通过一个用来控制三极管驱动器的功率控制卡完成的。
输出功率参考值由IMC操纵面板上的功率参考电位计给出,或者由外部控制面板输出给控制系统。此数值被传送给系统控制器后,将与由整流单元测量系统测量出的 DC功率数值相比较。控制器包括一个限定功能,它可以根据参考功率值与DC功率测量值的比较结果计算出一个新的输出电流设定值。控制器计算出来的输出功率设定值被送到功率控制卡,此控制卡将根据新的设定值来限定输出电流。
报警系统根据IMC中报警卡的输入信号及IMC,CRU中的各类监视设备发出的信号来工作。报警将显示在工作台上。
控制及整流器单元(CRU)
逆变器,匹配及补偿单元 (IMC)
直流线缆 输出功率总线,线圈及接触头连接
冷却系统安装在一个自支撑钢框架内,所有部件联结成为一个完整的单元。系统包括:带有电机的循环泵,热交换器(水/水),补偿容器,输出过程端(次输出)压力表,主进水口温度控制阀门,控制阀以及电气柜。主进水口端的热交换器使用未处理的支流水作为冷却用水,次端的热交换器则使用净化后的中性饮用水作为冷却水。未处理的水由恒温阀门控制,它用来测量次输出端的温度。钢框架可以用螺栓固定在门上。
3高频焊接质量控制的要点
影响高频焊接质量的因素很多,而且这些因素在同一个系统内互相作用,一个因素变了,其它的因素也会随着它的改变而改变。所以,在高频调节时,光是注意到频率,电流或者挤压量等局部的调节是不够的,这种调整必须根据整个成型系统的具体条件,从与高频焊接有关联的所有方面来调整。
影响高频焊接的主要因素有以下八个方面:
第一, 频率
高频焊接时的频率对焊接有极大的影响,因为高频频率影响到电流在钢板内部的分布性。选用频率的高低对于焊接的影响主要是焊缝热影响区的大小。从焊接效率来说,应尽可能采用较高的频率。100KHz的高频电流可穿透铁素体钢0.1mm, 400KHz则只能穿透0.04mm,即在钢板表面的电流密度分布,后者比前者要高近2.5倍。在生产实践中,焊接普碳钢材料时一般可选取 350KHz~450KHz的频率;焊接合金钢材料,焊接10mm以上的厚钢板时,可采用50KHz~150KHz那样较低的频率,因为合金钢内所含的铬,锌,铜,铝等元素的集肤效应与钢有一定差别。国外高频设备生产厂家现在已经大多采用了固态高频的新技术,它在设定了一个频率范围后,会在焊接时根据材料厚度,机组速度等情况自动跟踪调节频率。
第二, 会合角
会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁),这过梁段被剧烈加热时,其内部的钢水被迅速汽化并爆破喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。
会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而熔融段变长的结果,使得闪光过程不稳定,过梁爆坡后容易形成深坑和针孔,难以压合。
会合角过大时,熔融段变短,闪光稳定,但是邻近效应减弱,焊接效率明显下降,功率消耗增加。同时在成型薄壁钢管时,会合角太大会使管的边缘拉长,产生波浪形折皱。现时生产中我们一般在2°--6°内调节会合角,生产薄板时速度较快,挤压成型时要用较小的会合角;生产厚板时车速较慢,挤压成型时要用较大的会合角。有厂家提出一个经验公式:会合角×机组速度≮100,可供参考。
第三, 焊接方式
高频焊接有两种方式:接触焊和感应焊。
接触焊是以一对铜电极与被焊接的钢管两边部相接触,感应电流穿透性好,高频电流的两个效应因铜电极与钢板直接接触而得到最大利用,所以接触焊的焊接效率较高而功率消耗较低,在高速低精度管材生产中得到广泛应用,在生产特别厚的钢管时一般也都需要采用接触焊。但是接触焊时有两个缺点:一是铜电极与钢板接触,磨损很快;二是由于钢板表面平整度和边缘直线度的影响,接触焊的电流稳定性较差,焊缝内外毛刺较高,在焊接高精度和薄壁管时一般不采用。
感应焊是以一匝或多匝的感应圈套在被焊的钢管外,多匝的效果好于单匝,但是多匝感应圈制作安装较为困难。感应圈与钢管表面间距小时效率较高,但容易造成感应圈与管材之间的放电,一般要保持感应圈离钢管表面有5~8 mm的空隙为宜。采用感应焊时,由于感应圈不与钢板接触,所以不存在磨损,其感应电流较为稳定,保证了焊接时的稳定性,焊接时钢管的表面质量好,焊缝平整,在生产如API等高精度管子时,基本上都采用感应焊的形式。
第四, 输入功率
高频焊接时的输入功率控制很重要。功率太小时管坯坡口加热不足,达不到焊接温度,会造成虚焊,脱焊,夹焊等未焊合缺陷;功率过大时,则影响到焊接稳定性,管坯坡口面加热温度大大高于焊接所需的温度,造成严重喷溅,针孔,夹渣等缺陷,这种缺陷称为过烧性缺陷。高频焊接时的输入功率要根据管壁厚度和成型速度来调整确定,不同成型方式,不同的机组设备,不同的材料钢级,都需要我们从生产第一线去总结,编制适合自己机组设备的高频工艺。
第五, 管坯坡口
管坯的坡口即断面形状,一般的厂家在纵剪后直接进入高频焊接,其坡口都是呈“I”形。当焊接材料厚度大于8~10mm以上的管材时,如果采用这种“I”形坡口,因为弯曲圆弧的关系,就需要融熔掉管坯先接触的内边层,形成很高的内毛刺,而且容易造成板材中心层和外层加热不足,影响到高频焊缝的焊接强度。所以在生产厚壁管时,管坯最好经过刨边或铣边处理,使坡口呈“X”形,实践证明,这种坡口对于均匀加热从而保障焊缝质量有很大关系。
坡口形状的选取,也影响到调节会合角的大小。
焊接接头口设计在焊接工程中设计中是较薄弱的环节,主要是许多钢结构件的结法治坡口设计不是出自焊接工程技术人员之手,硬性套标准和工艺性能较差的坡口屡见不鲜。坡口形式对控制焊缝内部质量和焊接结构制造质量有着很重要作用。坡口设计必须考母材的熔合比,施焊空间,焊接位置和综合经济效益等问题。应先按下式计算横向收缩值ΔB。
ΔB=5.1Aω/t+1.27d
式中Aω——焊缝横截面积,mm³ ,t——板厚,mm,d——焊缝根部间隙,mm。 找出ΔB与Aω的关系后,即可根据两者关系列表分析,处理数据,进行优化设计,最后确定矩形管对接焊缝破口形式(图2)。
第六, 焊接速度
焊管机组的成型速度受到高频焊接速度的制约,一般来说,机组速度可以开得较快,达到100米/每秒,世界上已有机组速度甚至于达到400米/每秒,而高频焊接特别是感应焊只能在60米/每秒以下,超过10mm的钢板成型,国内机组生产的成型速度实际上只能达到8~12米/每秒。
焊接速度影响焊接质量。焊接速度提高时,有利于缩短热影响区,有利于从熔融坡口挤出氧化层;反之,当焊接速度很低时,热影响区变宽,会产生较大的焊接毛刺,氧化层增厚,焊缝质量变差。当然,焊接速度受输出功率的限制,不可能提得很高。
国内机组操作经验显示,2~3 mm的钢管焊接速度可达到40米/秒,4~6mm的钢管焊接速度可达到25米/秒,6~8 mm的钢管焊接速度可达到12米/秒,10~16 mm的钢管焊接速度在12米/秒以下。接触焊时速度可高些,感应焊时要低些。
第七, 阻抗器
阻抗器的作用是加强高频电流的集肤效应和相邻效应,阻抗器一般采用M-XO/N-XO类铁氧化体制造,通常做成Φ10mm×(120--160)mm规格的磁棒,捆装于耐热,绝缘的外壳里,内部通以水冷却。
阻抗器的设置要与管径相匹配,以保证相应的磁通量。要保证阻抗器的磁导率,除了阻抗器的材料要求以外,同时要保证阻抗器的截面积与管径的截面积之比要足够的大。在生产API管等高等级管子时,都要求去除内毛刺,阻抗器只能安放在内毛刺刀体内,阻抗器的截面积相应会小很多,这时采取磁棒的集中扇面布置的效果要好于环形布置。
阻抗器与焊接点的位置距离也影响焊接效率,阻抗器与管内壁的间隙一般取6~15 mm,管径大时取上限值;阻抗器应与管子同心安放,其头部与焊接点的间距取10~20 mm,同理,管径大时取大的值。
第八, 焊接压力
焊接压力也是高频焊接的主要参数。理论计算认为焊接压力应为100~300MPa,但实际生产中这个区域的真实压力很难测量。一般都是根据经验估算,换算成管子边部的挤压量。不同的壁厚取不同的挤压量,通常2mm以下的挤压量为:3~6 mm时为0.5t~ t;6~10 mm时为0.5t;10 mm以上时为0.3t~0.5t。
API钢管生产中,常出现焊缝灰斑缺陷,灰斑缺陷是难熔的氧化物,为达到消除灰斑的目的,宝钢等厂家多采取了加大挤压力,增加焊接余量的方法,6mm以上钢管的挤压余量达0.8~1.0的料厚,效果很好。
高频焊接常见的问题及其原因,解决方法:
《1》焊接不牢,脱焊,冷叠;
原因:输出功率和压力太小;
解决方法:1 调整功率;2 厚料管坯改变坡口形状;3 调节挤压力
《2》焊缝两边出现波纹;
原因:会合角太大,
解决方法:1 调整导向辊位置;2 调整实弯成型段;3 提高焊接速度
《3》焊缝有深坑和针孔;
原因:出现过烧
解决方法:1 调整导向辊位置,加大会合角;2 调整功率;3提高焊接速度
《4》焊缝毛刺太高;
原因:热影响区太宽
解决方法:1提高焊接速度;2 调整功率;
《5》夹渣;
原因:输入功率过大,焊接速度太慢
解决方法:1 调整功率;2 提高焊接速度
《6》焊缝外裂纹;
原因:母材质量不好;受太大的挤压力
解决方法:1 保证材质;2 调整挤压力
《7》错焊,搭焊
原因:成型精度差;
解决方法:调整机组成型模辊;
高频焊接是焊管生产中的关键工序,由于系统性的影响因素,至今还需要我们在生产第一线中探索经验,每一台机组都有它的设计和制造差别,每一个操作者也有不同的习惯,也就是说有,机组和人一样,都有自己的个性。我们将这些资料提供给大家,是为了让我们更好得了解高频焊接的基本原理,从而更好地结合自己的生产实践,总结出适合于自己机组的操作规程。
附:API标准关于管子焊接质量的规定
(美国石油学会)API—5L/5CT焊缝标准
API-5CT标准规定:
10.5 压扁试验
10.5.4 第1组试验方法----非整体热处理的管子
试样应在平行板间压扁。在每组压扁试样中,一个试样应在90°位置压扁,另一个试样应在0°位置压扁。试样应压扁至相对管壁相接触为止。在板间距离不小于表 C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。
10.5.5 第1和第2组试验方法----整体热处理的管子
试样应在平行板间压扁,且焊缝处于弯曲程度最大处。由检验人员决定,还应使焊缝位于距弯曲程度最大处90°位置进行压扁试验。试样应压扁至相对管壁相接触为止。在板间距离不小于表C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。
API-5L标准规定:
6.2.2 压扁试验验收标准
压扁试验验收标准如下:
a) 钢级高于A25级的电焊钢管以及规格小于12-3/4的激光焊钢管。
1)对于规定壁厚等于或大于0.500in(12.7mm),且钢级为X60或更高钢级的钢管原始外径(OD)的三分之二的焊缝应不出现开裂。对所有其他钢级和规定壁厚的钢管,压扁到钢管原始外径的1/2时,焊缝不应出现开裂。
2)对D/t大于10的钢管继续压扁到钢管原始外径(OD)的三分之一,除焊缝之外不应出现焊缝或断裂。
3)对所有D/t的钢管,继续压扁,直到钢管的管壁贴合为止,在整个压扁试验过程中,不得出现分层或过烧金属的现象。
b)对A25钢级的焊接钢管,压扁到钢管原始外径的四分之三焊缝应不出现开裂。继续压扁到到钢管原始外径的60%,除焊缝之外的金属应不出现焊缝或断裂。
注1:对于所有压扁试验,规格小于2-3/8的钢管,焊缝包括熔合线两侧各1/4in(6.4mm)范围内的金属,规格不小于2-3/8的钢管焊缝包括熔合线两侧各1/2in(12.7mm)范围内的金属
注2:对于经过热减径机的电焊钢管,在热减径前进行压扁试验,压扁试验的原始外径由制造厂确定。其他情况下,原始外径为规定外径。
表C.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离mm
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,mm。
t——管子规定壁厚,mm。
(a) 如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b) 见A.5(SR11)。压扁应至少为0.85D。
表E.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离in
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,in。
t——管子规定壁厚,in。
(a)如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3 或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b)见A.5(SR11)。压扁应至少为0.85D。
㈤ 为什么焊管机组焊管机组要进行调整
因为在生产过程中,机台会遇到偏差的问题,以及拉伤管子。这是需要调机师傅进行调整,才能生存好的钢管。
㈥ 高频焊管机生产时怎样判断带钢料硬
在线焊缝质量快速检测
1.1 上料检测
对进入焊管成型机组的钢带重点检测其尺寸与板边质量,确保板宽、壁厚及入料方向等满足工艺要求。一般使用数显卡尺、数显壁厚千分尺及卷尺等工具快速测量板宽及壁厚等尺寸,应用比对图谱或专用工具快速检测板边质量。一般根据炉号或分卷号确定检测频次,并对板料首尾等部位测量并记录。如条件允许,还须对钢带边缘进行探伤,以确保钢带及其加工边缘无分层或裂纹等缺陷。同时,边缘加工好的原料,运送到焊管生产线时也必须防止钢带边缘的机械损伤。
1.2 成型检测
板带成型的关键是使带钢边缘不产生过大的拉应力,以免形成波浪弯。成型机组安装调试中的相关检测项目包括成型、精整及定径各辊型尺寸与间隙、带钢周长变量、带边卷曲、焊接角、板边对接方式、挤压量等的快速检测与记录等。常使用数显卡尺、角度尺、塞尺、卷尺、皮尺及相应专用工具等进行快速测定,确保各控制变量处于生产工艺规范要求的范围内。
1.3 焊前检测
调整好成型机组各项参数并记录后,焊前检测主要确定内外毛刺刀具、阻抗器及感应器等的规格与位置,成型液状态及气压数值等环境因素,以满足工艺规范确定的开机要求。相关测量主要根据操作者经验,辅以卷尺或专用器具,快速测定并记录。
1.4 焊中检测
焊接中重点关注焊接功率、焊接电流电压、焊接速度等主要参数的数值。一般由机组中相应传感器或辅助仪器直接读取并记录。按相关操作规程,保证主要焊接参数符合工艺规范要求即可。
1.5 焊后检测
焊后检测需要关注焊接火花状态及焊后毛刺形貌等焊接现象,一般焊接时挤压辊处焊缝颜色、火花状态、内外毛刺形貌、去毛刺后热区颜色及壁厚变量等均属重点检测项目,主要依据操作者实际生产经验,肉眼监测并辅以相关比对图谱快速测定并记录,并保证相关参数满足工艺规范要求。
1.6 金相检测
相比其他检测环节,因金相检测难以在现场进行,一般耗时较长,直接影响了生产效率,因此,优化金相检验流程,提高检验效率,实现快速测评具有重要的现实意义。
1.6.1 取样环节优化
在取样点的选择上,一般有成品管取样、飞锯点取样及定径前取样等,考虑到冷却定径对焊缝质量影响不大,建议定径前取样。在取样方式上,一般采用气割、金属锯或手动砂轮片等方式,因定径前取样空间狭小,建议优选电动砂轮片切取试样。对于厚壁管,气割取样效率更高,各公司亦可设计相关专用工具提高取样效率。在取样尺寸上,为减小检测面积以提高制样效率,在确保焊缝完整的前提下,试样一般取20 mm×20 mm及以上尺寸。对于正置式显微镜,取样时应尽可能保证检测面与其对面平行,以便进行聚焦测量。
1.6.2 制样环节优化
制样环节一般采用手工磨抛金相试样,因绝大多数焊管硬度较低,可选用60目、200目、400目和600目的砂纸水磨后,用3.5 μm金刚石喷雾颗粒帆布粗抛,去除肉眼可见划痕,再使用水或酒精润湿的呢子抛光布精抛,得到洁净光亮检验面后,直接用电吹风热风吹干完成。在相关设备状况良好,砂纸等准备得当,各工序衔接便捷的情况下,5 min内即可完成制样。
1.6.3 腐蚀环节优化
焊缝金相检验主要检测焊缝区域熔合线中心宽度及流线角度,实践中采用过饱和苦味酸水溶液加热至70℃左右腐蚀至光亮消除即可取出,并在水流中用脱脂棉擦除腐蚀面污渍后,再用酒精冲洗并用电吹风热风吹干。为提高配制效率,可将苦味酸倒入大烧杯中加水及少许洗洁精或洗手液(起表面活性作用)搅拌均匀后制成常温下过饱和水溶液 (底部有明显结晶沉淀)放置备用,实际使用时,搅拌泛起底部沉淀后,将悬浮液倒入加热用小烧杯即可使用。为提高腐蚀效率,试验前可根据生产送样时间点,提前将腐蚀液加热至规定温度并保温待用,如需进一步加快腐蚀,可提高加热温度至85℃左右。操作熟练的试验员在1 min内即可完成腐蚀工序。如要求组织及晶粒度的测量,则也可选用4%硝酸酒精溶液快速腐蚀。
1.6.4 检测环节优化
㈦ 想知道焊管设备为什么会出现漏焊管现象
原因比较多。比如:焊qiang位置没有对准;氩气不多,焊火不集中;钢管没有清理干净;焊管设备的电流没有调节好等等都会造成漏焊管现象,希望【扬州新飞翔焊管机械】的回答对你有帮助。
㈧ 不锈钢焊管机焊缝时不时出现缺口怎么解决
冠杰科技为你解答:焊管机经过长期的工作,会出现以下九点常见焊接缺陷:版
1、夹杂物(黑色权过烧氧化物)
2、预弧(白色过烧氧化物)
3、融合不足(开缝)
4、边部熔合不足(边缘波浪)
5、中部熔合不足(中部冷焊)
6、粘焊(冷焊)
7、铸焊(脆性焊)
8、气孔(针孔)
9、跳焊
㈨ 焊管机的原理是什么
原料(带钢卷)-上料-剪切对焊(手工焊)-储料仓-喂入成型-高频焊接-去外毛刺-冷却水套-定径矫直-飞锯切断-落料(人工堆垛包扎)