① 比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因
低碳钢(最典型的即是目前钢结构工程中常用的Q235钢)拉伸时出现明显屈服和颈专缩现象,断口周属围产生约45°滑移线;铸铁拉伸时不屈服也无颈缩现象,断口整齐。
原因:低碳钢拉伸破坏由最大切应力造成;铸铁拉伸破坏由最大拉应力造成。
解释:低碳钢抗剪强度低于抗拉强度,根据第三强度理论,单向应力状态下与第一主应力成45°的斜截面上产生最大切应力,且数值上τ=σ₁/2,故低碳钢拉伸时沿45°斜面剪切破坏;铸铁抗拉强度则很小,根据第一强度理论,直接沿横截面被拉断。
② 低碳钢和铸铁拉伸破坏时有什么特点
首先我想指出的的是低碳钢是韧性材料,铸铁是脆性材料,建议你从以下几点回答。专首先是二者的拉伸曲线阶属段的分析,各个阶段都可以写一点不同。其次是断裂的特点及断口形貌的分析。相信你的材力书上应该有吧!!如果你还不是很明白,我可以再多写一点。
③ 比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因
低碳钢拉伸时发生颈缩,断口截面要小于实际截面,截面不平整,断口呈金属光泽.铸铁不会发生颈缩,断口截面比较平整,呈灰黑色.
④ 低碳钢拉伸试验进入屈服阶段以后发生什么变形
⒈√
⒉√
⒊√
⒋错
⒌√
⒍错
⒎√
⒏错
⒐√
⒑√
11√
12错
13√
14错
15√
⑤ 低碳钢拉伸和扭转的断口形状是否一样分析其破坏原因。
伸为平断口,所以剪应力先于拉应力达到最大值,由于低碳钢抗拉能力大于抗剪能力,扭转为45度的螺旋断口。
拉伸时的破坏原因是拉应力
扭转时;故破坏原因是最大剪应力
⑥ 比较低碳钢和铸铁在拉伸时的机械性质和破坏特征,并画出破坏草图
低碳钢是塑性材来料,铸铁自是脆性材料,所以在拉伸时低碳钢有四个阶段,弹性阶段,屈服阶段,强化阶段和局部变形阶段。有明显的缩颈现象,而铸铁则只有一个阶段即强化阶段,达到强度极限之后马上断裂,因为铸铁抗压不抗拉,所以二者不同。
低碳钢拉伸时首先出现滑移(屈服),然后存在明显的颈缩及伸长变形(塑性)并最后断裂,断口成杯状,断裂是拉力和剪力共同作用的结果。铸铁拉伸时发生很小的变形后就断裂,断口垂直轴向,断裂主要来自于拉应力作用。
(6)低碳钢拉伸受什么破坏扩展阅读:
低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。
⑦ 低碳钢和铸铁拉伸时的机械性质及破坏形式
低碳钢耐拉,铸铁耐压。
低碳钢拉断的时候有明显的颈缩现象
铸铁是马上断裂,几乎看不出有颈缩现象
⑧ 低碳钢和铸铁拉伸破坏特点有什么不同
低碳钢碳含量百分比在0.5%以下,具有较低硬度,有良好韧性。确定版他的延展性和塑性,权是塑性材料。抗拉能力高。
而铸铁的碳含量大于2%,碳已饱和独立存在铁中,碳颗粒悬浮在铁中,令铁的结构松散,成了脆性材料,韧性差,抗拉能力低。
低碳钢试件受扭转时沿横截面破坏,此破坏是由横截面上的切应力造成的,说明低碳钢的抗剪强度较差;铸铁试件受扭转时沿大约45度斜截面破坏,断口粗糙,此破坏是由斜截面上的拉应力造成的,说明铸铁的抗拉强度较差。
⑨ 低碳钢拉伸试验破坏机理分析
低碳钢拉伸实验目录
一、 实验目的:
二、 实验仪器和设备:
三、 实验原理和步骤:
编辑本段一、 实验目的:
1测定低碳钢的上屈服强度Reh,下屈服强度Rel,抗拉强度Rm,断后伸长率A,断面收缩率Z 2观察低碳钢在拉伸过程中所出现的屈服、强化和缩颈现象,分析力与变形之间的关系,并绘制拉伸图。 3学习、掌握万能试验机的使用方法及其工作原理
编辑本段二、 实验仪器和设备:
100KN液压万能试验机,试验划线器,游标卡尺
编辑本段三、 实验原理和步骤:
● 原理部分: 低碳钢是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。大致可分为四个阶段: (1)弹性阶段OA:这一阶段试样的变形完全是弹性的,全部写出荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。 (2)屈服阶段AS’:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内(图中锯齿状线SS’)波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。 (3)强化阶段S’B 试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。 (4)颈缩阶段和断裂BK 试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断。断口呈杯锥状如右图所示 利用原始标距内的残余变形来计算材料断后伸长率A和断面收缩率Z,计算公式为: 式中L0为原始标距长度,S0为原始横截面面积,Lu为试样断裂后标距长度,Su为试样断裂后颈缩处最小横截面面积。 图2-4 低碳钢拉伸图 ● 步骤: 1在试样的原始标距长度L0范围内,用试样划线器细划等分10个分格线 2.根据GB/T 228—2002《金属材料室温拉伸试验方法》中第7章的规定,测定试样原始横截面面积。本次实验采用圆形截面试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径d,取其算术平均值,选用三处中平均直径最小值,并以此值计算横截面面积S0,其S0 =πd2/4。该计算值修约到四位有效数字(π取五位有效数字)。 3.打开试验机,安装试样,可快速调节试验机的夹头位置,将试样先夹持在上夹头中,再升起下夹头,将试样夹牢并使之铅直; 4.在计算机上输入已测平均直径中最小值等参数,并勾选所需测定的参数FeH值、下屈服点力FeL值和最大力Fm值,上屈服强度Reh,下屈服强度Rel抗拉强度Rm。将进油阀关闭,按试验机上启动键。同时,操作计算机软件使之开始绘制曲线图。 5..在加载实验过程中,总的要求应是缓慢、均匀、连续地进行加载。并采用位移控制速率0.009mm/s。开始测定时至达到屈服强度阶段,试样平行长度的控制速率为0.009mm/S。达到强化阶段后可适当增大速率至0.015mm/s。试样拉断后立即停机并先取下试样,然后打开回油阀,使工作平台复位。 5.在实验中,注意观察拉伸过程四个特征阶段中的各种现象,记录的上屈服点力FeH值、下屈服点力FeL值和最大力Fm值,上屈服强度Reh,下屈服强度Rel抗拉强度Rm 考虑软件识别问题,手动定位并设置下屈服点。 6.将断后试样拼接并用游标卡尺测断后标距Lu,和拉断处最小断面的直径。
⑩ 低碳钢和铸铁受压端口破坏形式有何不同
低碳钢和铸铁抄受压端口破坏袭形式的区别:
铸铁:
拉伸试验——断口是平面,属于拉伸破坏
压缩试验——45度碎裂,只能剪切破坏
脆性材料的抗剪切强度大于抗拉伸强度。弹性变形很小,基本无塑性变形,屈服强度与抗拉强度基本相同。
低碳钢:
拉伸试验——变形很大,断口缩颈后,端口有45度茬口,属于剪切破坏
压缩试验——呈腰鼓形塑性变形
韧性材料的抗剪切强度小于抗拉伸强度。弹性变形和塑性变形都很大。