A. 鋼和鐵是什麼時候發明的
問題應該是制鋼和制鐵(技術)是什麼事發明的吧?
制鐵術的出現至少是在公元內前1900年,容而在我國的正式廣泛的使用大概是在公元前500年(西周);
制鋼術大概見於我國的時期是在制鐵後600年左右的東漢。制鋼只是比制鐵需要更高的溫度(去碳),
B. 鋼鐵是誰發明的
魏晉南北朝時期
《重修政和證類本草·玉石部》「鐵精」條引南齊陶弘景的話:「鋼內鐵是雜煉生(生鐵容)鍒(熟鐵)作刀鐮者」。近年從河南澠池、洛陽,四川昭化,湖北均縣,江蘇南京等地出土的大量農具犁、鏟、、鋤、鐮等,也都為白口鐵柔化製成的。說明魏晉南北朝時期製造農具的原料質量有較大提高。
C. 現代煉鋼技術如何發明的
直到19世紀中期,歐洲煉鋼仍然採用攪拌法,即是把生鐵加熱到熔化或半熔後,放進熔池中進行攪拌。它藉助攪拌時空氣中的氧氣將生鐵中的碳氧化掉,這正是1 600多年前我國漢朝時代出現的炒鋼法。1860年在英國大約有3 400多座攪拌煉鋼池,每12小時一般攪煉一池,每池250千克。
在攪拌池中煉鋼很難控制鋼中碳的含量,而且要耗費很大的人力。到1856年,英國人貝塞麥(H.Bessemer,1813~1898)創造了一種轉爐煉鋼法,解決了這個難題。
貝塞麥是一位法國大革命時逃亡到英國的機械工程師的兒子,少年在離開鄉村學校後當上鉛字澆鑄工,17歲開始經營生產金屬合金和青銅粉,在參加英、法與俄羅斯對抗的克里米亞(Crimea)戰爭(1853~1856)中,親眼目睹用生鐵或熟鐵製造的炮身經受不住火葯的爆炸力,常常產生爆裂,遂促使他尋找一種生產鋼的方便方法。
貝塞麥曾經注意到一些固態的鑄鐵塊在熔化前由於暴露在空氣中而脫碳了,當然這種氧化作用就是攪拌法煉鋼的原理,他沒有學過化學,不了解這個原理,但卻使他考慮到把空氣鼓入鐵水中煉鋼。於是在1856年的一天,他在倫敦聖潘克拉斯(St.Pancras)建成一座煉鋼爐。
這是一座固定式容器。可盛放350千克鑄鐵,把空氣加壓鼓入容器中後,反應的猛烈程度使貝塞麥大吃一驚,因為他沒有估計到鑄鐵中碳與空氣中氧氣的反應以及其他雜質與氧氣的反應會放熱。幸好,10分鍾後,當雜質已除去後,火焰平息了,可以走近容器,切斷加壓的空氣流。金屬被注入錠模中,經測定是低碳鋼。1856年8月11日,貝塞麥在切爾特南(Cheltenham)不列顛協會的會議上公布了這一創造發明。很快,貝塞麥製成一種可轉動的可傾倒式轉爐,每爐可容納5噸生鐵,熔煉時間為1小時,包括補爐和鑄錠的時間在內,大大縮短了攪拌煉鋼的時間,更減少了攪拌熔煉操作所費的力氣。於是,國內外煉鋼廠紛紛購買此法的生產許可證。
貝塞麥在宣布他的創造發明後受到各界人士的熱情贊揚,但是很快就遭受到批評和嘲諷,原因是用他創造的轉爐煉出的鋼錠由於氧化過度,生成的氧化鐵存在鋼中,同時生鐵中的磷未能除去,使鋼的質量很差,不是疏鬆,就是硬脆,在鍛打時發生斷裂。
關於鋼中存在過量氧化鐵的問題,後來由英國一位富有煉鋼實踐經驗的馬希特(R.F.Mushet)解決了,他在熔化了的金屬中添加稱為鏡鐵的鐵、錳和碳的合金,因為錳能將生成的氧化鐵還原。
除去鐵礦石中的磷是煉鋼中長期未解決的問題。貝塞麥和其他所有煉鋼爐的建造者一樣,用含硅的材料作為爐的襯里。這種爐襯不會和磷被氧化生成的氧化物結合,不能把這種穩定的化合物從鋼中除去。貝塞麥只能選用含磷低於0.05%(質量分數)的礦石煉成鐵後再煉鋼。
除磷的問題後來卻由英國一位法院的書記員托馬斯(S.G.Thomas,1850~1885)經試驗後解決了,在1878年獲得成功。
托馬斯雖然是一位法庭書記員,卻熱愛化學。他利用業余時間進倫敦大學伯克培克(Birkbeck)學院進修化學課程,並通過英國皇家礦業學院冶金學和化學的考試。他在得知貝塞麥煉鋼中需要解決除磷的問題後,用各種化學物質,包括氧化鎂和石灰等進行試驗,在他的表弟吉爾克里斯特(P.C.Gilchrist)協助下,在布萊納封(Blaenavon)的煉鋼廠用一個轉爐進行試驗,他的表弟正是這個煉鋼廠的化學師。他們兩人在1877~1878年進行了9個月的試驗,證明經焙燒過的白雲石用石灰黏結作為轉爐襯里能滿意地除去磷,而且還同時生產出寶貴的磷肥,後人為紀念他,至今把這種磷肥稱為托馬斯磷肥。
白雲石是含有碳酸鎂、碳酸鈣的岩石,焙燒後生成氧化鎂、氧化鈣等,能與磷的氧化物化合生成鎂和鈣的磷酸鹽,是很好的磷肥。
1883年托馬斯獲得貝塞麥獎章,可惜因患肺結核病,35歲即逝世。貝塞麥發明創造的轉爐煉鋼法在得到托馬斯等人的改進後一直沿用至今。現今使用的轉爐可以繞水平軸旋轉,便於加料和卸料。爐底有氣孔,從氣孔鼓入空氣。用它煉一爐鋼約需十幾分鍾,容量從一噸到數十噸不等。
隨著工業的發展,在生產建設和日常生活中出現了大量的廢鋼、廢鐵。這些廢料在轉爐中不能利用,於是在出現轉爐煉鋼的同時,出現了平爐煉鋼。
在轉爐煉鋼中,使金屬保持液態所需的熱量是由化學反應所產生的熱提供的,但在平爐煉鋼中,化學反應產生的熱量不足以使金屬保持熔融狀態,所以必須由外部熱源供應熱量。
1856年,德國人西門子·弗雷德里克(Frederick Siemens)利用熱再生原理創建一種交流換熱爐。這是在燃燒爐兩側各建一蓄熱格子磚室,從燃燒爐中出來的熾熱的燃燒廢氣通過一邊的格子磚室,將熱量傳給格子磚,隨後將燃燒用的空氣通過被加熱的磚室,提高溫度後進入燃燒室燃燒,從而提高了爐溫。每隔一定時間,交換空氣和廢氣的流動方向,使兩邊的蓄熱室交替使用。這種爐子最初被用來燒制玻璃,後來被用來煉鋼,這就是平爐。
最初,在平爐中燃燒固體燃料。1861年西門子·弗雷德里克的兄弟西門子·威廉(William Siemens,1823~1883)創造一種煤氣發生爐,生產發生爐煤氣。這是將定量的空氣和少量水蒸氣通過燃燒的煤或赤熱的焦炭,使之生成的二氧化碳盡可能轉變成可燃的一氧化碳。水蒸氣與碳反應後生成可燃的一氧化碳和氫氣。
西門子·威廉是一位工程師,在德國接受正規的技術教育後來到英國;西門子·弗雷德里克在德國得累斯頓(Dresden)經營電氣公司,也曾到英國。他們兄弟二人認為英國鼓勵工程技術人員和發明創造者,在英國申請專利比較方便。他們於1866年在英國伯明翰(Birmingham)共同建立西門子鋼廠,利用平爐進行煉鋼。
西門子兄弟共四人,都是出色的發明家。威廉是老二,弗雷德里克是老三。老大西門子·維勒(Werner Siemens,1816~1892)是一位電化學家,發明發電機原理,創建德國西門子公司。最小的弟弟西門子·卡爾(Carl Siemens)在俄羅斯創辦企業。這樣,維勒被稱為「柏林的西門子」;威廉被稱為「倫敦的西門子」;弗里德里克被稱為「德累斯頓的西門子」;卡爾被稱為「俄羅斯的西門子」。
差不多在同一個時期,法國冶金學家馬丁(P.Martin,1824~1915)和他的兄弟(B.Martin)同樣利用熱再生原理,建立平爐,在法國錫雷(Sireuil)建廠生產。他們生產的鋼在1867年巴黎博覽會上展出獲金質獎章。馬丁在1915年獲英國鋼鐵學會授予的貝塞麥獎章。
D. 不銹鋼是怎麼發明出來的
1912年,英國冶金學家亨利·布里爾利受英國政府軍工部兵工廠的委託,研究改進步槍槍膛易磨損而引起射擊不準的缺點。這個任務非他莫屬。他的思路是,在普通鋼鐵中加入另外一種金屬,以此來增加鋼的硬度,使之成為一種不易磨損的適於製造槍管的合金鋼。他試著將鉻摻入鋼中冶煉,但結果卻不能如願以償,冶煉得到的合金仍不耐磨,他大失所望,他只好心灰意冷地把它們扔入垃圾堆中。
許多試驗失敗後的合金堆在那裡,垃圾越堆越多。那些廢鋼鐵日曬雨淋,日子一久,全都生銹了,連地上也留有褐色的銹跡。大家一邊清除垃圾,一邊為還沒有制出硬度較高的鋼而苦惱不已。忽然間,布里爾利發現,垃圾堆中有幾塊金屬在閃閃發光,這在一堆銹鐵中特別耀眼。仔細一看,正是那幾塊原來扔掉的合金。大家爭先恐後地拿過來看:樣子就像普通的鋼嘛,可為什麼它偏偏不一樣呢?他很奇怪,為什麼其他的金屬都生銹了,只有這幾塊金屬沒有生銹呢?它們的成分組成一定有什麼特別的地方。因為丟棄的東西都是亂放的,沒有編碼登記,他們只好將這塊「奇鋼」進行仔細分析,結果是:碳佔0.24%,鉻佔12.8%,其餘為鐵。這就是著名的不銹鋼。真是有心栽花花不開,無心插柳柳成蔭,不銹鋼就是這樣被布里爾利發明出來了。
不銹鋼是一類能抵抗酸、鹼、鹽等腐蝕作用的合金鋼的總稱,任何一種不銹鋼都不能抵抗各種介質的腐蝕。能抵抗何種介質腐蝕,由不銹鋼中的組成部分決定。常用的不銹鋼有鐵鉻鎳不銹鋼和鉻不銹鋼兩種,但具體因含量不同又可分為很多種。那種是否被磁鐵吸引而鑒別不銹鋼的方法是靠不住的。1915年,布里爾利取得了這一發明的美國專利,並生產出了世界上第一把不銹鋼刀具;1916年他又取得了這一發明的英國專利;他還與莫斯勒合辦了一個生產不銹鋼餐刀的工廠,這種餐具很受歡迎,轟動歐洲,後來又傳遍全世界。從此,布里爾利被尊稱為「不銹鋼之父」。至今各類不銹鋼的產品已廣泛用於各個領域。
其實,布里爾利並不是不銹鋼的惟一發明者。在20世紀初,法國居耶和波魯茲已經發現鐵中摻有鉻後的金屬可抗腐蝕,但他不知道能用這種合金來做什麼,沒有加以利用。1912年,美國赫莫斯也產出不銹鋼製品,同時,德國舒特勞斯和毛勒發明了鐵鉻鎳不銹鋼,這和布里爾利不銹鋼中金屬的種類是一致的,也是至今使用最廣泛的一種不銹鋼。但是由於他們都沒有作更深入的研究和闡述,更沒有申請專利,因而與榮譽和巨大的經濟利益失之交臂,令人遺憾。
E. 鋼鐵是怎麼煉成的要詳細過程
煉鐵:
輸料系統把燒結礦(由燒結廠燒成的)、焦碳、石灰石等原料輸入到高爐頂的布料系統,由布料系統均勻的按一定比例布入爐內。熱風系統將風吹進高爐,焦碳燃燒形成一定的高溫(1150--1200度)化學氣氛,燒結礦中鐵的氧化物在這種溫度和環境下發生還原反應。
礦石中的氧一部分形成二氧化碳,一部分變成一氧化碳,還有一些雜質氣體被高溫排走,進入除塵凈化系統和高爐燃氣回收系統,無用的二氧化碳被排走,一氧化碳被回收再利用。礦石中的鐵被還原後在高溫下行成液態鐵水。
鐵水又叫生鐵。生鐵可分三類:一類是供煉鋼用的鋼鐵(硅SI含量小於1.25%);一類是供澆鑄機件和工具的鑄造鐵(硅含量大於1.25%);還有一類是鐵合金(主要是錳鐵和硅鐵)。
煉鋼:
實質上是將鐵水(生鐵)加溫並添加不同的元素,通過吹氧等手段,使鐵的含碳量降低到0.2-1.7%的冶煉過程。可煉出多種不同質地的鋼。如加錳,就煉出錳鋼;加鎳、鉻、鈦就煉出不易生銹的鋼。
(5)鋼鐵是怎麼發明的擴展閱讀:
鐵碳合金分為鋼與生鐵兩大類,鋼是含碳量為0.03%~2%的鐵碳合金。碳鋼是最常用的普通鋼,冶煉方便、加工容易、價格低廉,而且在多數情況下能滿足使用要求,所以應用十分普遍。按含碳量不同,碳鋼又分為低碳鋼、中碳鋼和高碳鋼。隨含碳量升高,碳鋼的硬度增加、韌性下降。
合金鋼又叫特種鋼,在碳鋼的基礎上加入一種或多種合金元素,使鋼的組織結構和性能發生變化,從而具有一些特殊性能,如高硬度、高耐磨性、高韌性、耐腐蝕性,等等。經常加入鋼中的合金元素有Si、W、Mn、Cr、Ni、Mo、V、Ti等。
合金鋼的資源相當豐富,除Cr、Co不足,Mn品位較低外,W、Mo、V、Ti和稀土金屬儲量都很高。21世紀初,合金鋼在鋼的總產量中的比例將有大幅度增長。
含碳量2%~4.3%的鐵碳合金稱生鐵。生鐵硬而脆,但耐壓耐磨。根據生鐵中碳存在的形態不同又可分為白口鐵、灰口鐵和球墨鑄鐵。白口鐵中碳以Fe3C形態分布,斷口呈銀白色,質硬而脆,不能進行機械加工,是煉鋼的原料,故又稱煉鋼生鐵。
碳以片狀石墨形態分布的稱灰口鐵,斷口呈銀灰色,易切削,易鑄,耐磨。若碳以球狀石墨分布則稱球墨鑄鐵,其機械性能、加工性能接近於鋼。在鑄鐵中加入特種合金元素可得特種鑄鐵,如加入Cr,耐磨性可大幅度提高,在特種條件下有十分重要的應用。
鋼鐵中碳的來源:煉鐵的原料之一是鐵礦石,鐵礦石主要成份是Fe2O3,沒有碳。煉鐵的原料之二是焦碳。煉鐵過程部分焦碳留在了鐵水中,導致鐵水中含碳。鋼鐵的生產 由鐵礦石煉生鐵。
由生鐵作原料煉鋼,煉鋼的過程主要是除碳的過程.還不能將碳除盡,鋼需要有一定量的碳,性能才達到最佳。
按冶煉設備分
⑴轉爐鋼 用轉爐吹煉的鋼,可分為底吹、側吹、頂吹和空氣吹煉、純氧吹練等轉爐鋼;根據爐襯的不同,又分酸性和鹼性兩種。
⑵平爐鋼 用平爐煉制的鋼,按爐襯材料的不同分為酸性和鹼性兩種,一般平爐鋼多為鹼性。
⑶電爐鋼 用電爐煉制的鋼,有電弧爐鋼、感應爐鋼及真空感應爐鋼等。工業上大量生產的,是鹼性電弧爐鋼。
按鋼的品質分
⑴普通鋼 鋼中含雜質元素較多,含硫量ws一般≤O.05%,含磷量wP≤0.045%,如碳素結構鋼、低合金結構鋼等。
⑵優質鋼 鋼中含雜質元素較少,含硫及磷量ws、wp,一般均≤0.04%,如優質碳素結構鋼、合金結構鋼、碳素工具鋼和合金工具鋼、彈簧鋼、軸承鋼等。
⑶高級優質鋼 鋼中含雜質元素極少,含硫量ws一般≤O.03%,含磷量wP≤0.035%,如合金結構鋼和工具鋼等。高級優質鋼在鋼號後面,通常加符號「A」或漢字「高」以便識別。
F. 鋼鐵是誰發明的
尼古拉·奧斯特洛夫斯基
G. 鋼鐵是怎樣煉成的是在什麼情況下創造出來的
作者為祖國奉獻一生,病重,無法繼續奉獻時創造出來的
H. 鋼鐵是怎樣發現的
一、 生產工具的鐵器化與冶鐵業的發展 戰國以後,由於冶鐵技術的進步,社會經濟制度的變革,社會上對於鐵器需要量的增加,鐵礦的開采,鐵的冶煉和鑄造成為關系國計民生的重要手工業,因此,冶鐵業開始發展起來。在戰國時代開發的鐵礦已經不少,戰國時代的著作《山海經·五藏山經》所載產鐵之山就有37處,記錄屬南陽的就有「帝 NF9A5 之山 『其陰多鐵』」,約在今河南省泌陽縣和南陽縣之間;另一處即「兔床之山,『其陽多鐵』」,約在今嵩縣和南陽縣之間。戰國時代各國都有冶鐵手工業,其中韓、楚兩國的冶鐵手工業最為發達,著名的冶鐵手工業地點也最多,當時的南陽已經成為戰國時代聞名的冶鐵中心。《荀子·議兵篇》記載:「宛鉅鐵(釒也),慘如蜂蠆。」至秦漢時期,鐵器和冶鐵技術在廣大地區已經得到了廣泛的傳播和使用。從考古中發現,西漢初年鐵制農具和工具已取代了銅、骨、石、木器,到西漢中期,隨著冶鐵技術的發展,鍛鐵工具增多,鐵兵器也逐步占據了主要地位,直至東漢,主要的兵器全部為鋼鐵所制,從而完成了兵器和生產工具的鐵器化進程。 西漢初年,冶鐵業可聽任商人經營。魏國的孔氏原經營冶鐵業,秦滅魏後,被強行遷到南陽,靠冶鐵成為巨富。西漢武帝時,武帝任用南陽的大冶鐵商孔僅為「大農丞,領鹽、鐵事」,管理全國的鹽鐵業,南陽成為全國設立鐵官的手工業基地之一。在南陽瓦房庄發掘的漢代冶鐵遺址中,就曾發現西漢時期的冶鐵遺物(熔爐基、耐火磚、鼓風管、鑄造用的模具及鐵器,包括鐵犁鏵、鐵耬鏵、鐵鍤、錛、斧等)。至東漢,南陽的冶鐵業在西漢基礎上,冶鐵作坊數量增多,規模空前擴大,技術顯著提高。建國後在南陽附近發現的冶鐵遺址就有:南陽市北關瓦房庄鑄鐵作坊遺址,桐柏張陂村的大張陂冶鐵遺址,桐柏縣鐵爐村遺址,南召縣太山廟、草店冶鐵遺址,方城縣趙河村冶鐵遺址,鎮平縣安國城鐵范、鐵鑄件遺址,西峽縣白石尖冶鐵石等。1959~1960年南陽市北關瓦房庄發掘的漢代冶鐵遺址,主要遺址面積達2800m 2,發現了大量的冶鐵遺跡和遺物,其中熔爐9座,炒鋼爐8座,鍛爐1座。發現在當時的生產條件下冶鐵過程中使用了熱鼓風爐,這是我國早期使用的節約熱能的熔爐。鑄造使用的模和范近40種。由文物考古發掘的遺物可見,在當時南陽已經成為全國的冶鑄中心。
I. 最早的鋼鐵製造法是那國發明
英國冶金學家貝塞麥發明的酸性轉爐煉鋼法,1856年8月24日,貝塞麥首先在不列顛科技版協會的一次會議上描述權了他的煉鋼法,當時他稱之為「不加燃料的煉鐵法」。那篇報告在泰晤士報上全文登出。後來全力進行煉鋼法的研究,發現將融化的生鐵放進轉爐內,吹入高壓空氣,便可燃燒掉生鐵所含的硅、錳、磷、碳,而煉成鋼。這是首創大量產鋼的方法。此後,歐洲、美洲都引進了這一先進方法,世界進入了鋼鐵時代。
J. 鋼何時發明的
鋼材的發明比較復雜。有資料說中國人最早發明了現代鋼。但是鋼其實是以內鐵為主料的堅韌性容合金~鐵合金,所以也叫鋼鐵。堅韌性是鋼材的功用追求,這才是鋼材的本質。所以,只要是以鐵為主體材料,增加其它物質形成了堅韌性質的鐵合金,都叫鋼。只不過,隨著科學的進步,現代鋼的各種物質比較更加精準而高質量罷了。而華國宋代的鋼是最接近現代鋼的大批量生產的鋼材。如果以這個標准為依據,最早發明鋼的國家就說不清楚了。因為早在中國只有少量鐵器的西周時期,西亞就產生了類似的鐵合金~原始鋼材,後來印度、中亞、歐洲都有類似的原始鋼材。不過中國發明風力機械後,尤其是漢代發現煤炭燃料後,以生鐵反復鍛造形成了比較堅韌的鐵合金,也是一種典型的原始鋼材。中國古代的原始鋼並不是最好的~以致西亞傳入的鑌鐵成為新寵,但是產量是最大的。直到宋代發明了焦炭和高爐,才產生了真正意義的大批量生產的近代鋼。宋代焦炭和高爐傳到西方,產生了西方現代鋼的技術體系。
所以,原始鋼的發明權,同鐵的冶煉技術發明權一樣,都是西亞人的。也就是,冶鐵術與煉鋼術,都是西亞人最早發明的。