1. 如何結合鐵碳相圖分析鐵碳合金的切削性和可鍛性
鐵碳合金的基本組元也應該是純鐵和Fe3C。鐵存在著同素異晶轉變,即在固態下有不同的結構。不同結構的鐵與碳可以形成不同的固溶體,Fe—Fe3C相圖上的固溶體都是間隙固溶體。由於α-Fe和γ-Fe晶格中的孔隙特點不同,因而兩者的溶碳能力也不同。
在鐵碳合金中,熔點最低的是c點的鐵碳合金,熔點為1148攝氏度,含碳量為4.30%,所以鐵碳合金中,熔點最低的是共晶白口鑄鐵。
(1)鐵碳合金的基本性能是什麼擴展閱讀:
鐵碳合金相圖可以表達溫度及碳的濃度對鋼鐵的影響,不過沒有其他金屬的資訊。鐵碳合金相圖可以分為二部分:亞穩定的Fe-Fe3C系統,其中的碳已和鐵鍵結,以及穩定的Fe-C系統,其中碳以石墨的形式存在。鐵碳合金相圖一般會包括這兩個系統,不過Fe-Fe3C系統用到的比較多。
2. 1.什麼是相鐵碳合金的基本組織有哪些概念、力學性能以及含碳量各是什麼樣的 2.布氏硬度、洛氏
1、相(phase)的概念比較抽象,相的定義是系統中結構相同、成分和性能均一,並以界面相互分開的組成部分。多相系統中,不同相之間一定有明顯的分界面,越過相界面時,物理性質和化學性質將發生突變。
鐵碳合金的基本組織有:平衡組織有:單相組織有鐵素體、奧氏體和滲碳體組織。多相組織有珠光體、萊氏體組織。非平衡組織有:貝氏體、馬氏體組織。
鐵素體:是碳溶解在a-Fe中的間隙固溶體,常用符號F表示。具有體心立方晶格,其溶碳能力很低,常溫下僅能溶解為0.0008%的碳,在727℃時最大的溶碳能力為0.0218%。鐵素體組織具有良好的塑性和韌性,但強度和硬度都很低.
奧氏體:是碳溶解在r-Fe中的間隙固溶體,常用符號A表示。具有面心立方晶格,其溶碳能力為0.%~2.11%。奧氏體組織具有良好的塑性和韌性,強度和硬度都很低,但比鐵素體高.
滲碳體:是鐵與碳形成的金屬化合物,其化學式為Fe3C。滲碳體的含碳量為ωc=6.69%,為復雜的正交晶格,硬度很高,但是塑性、韌性幾乎為零,強度也很低。
珠光體:是由奧氏體發生共析轉變的產物,是鐵素體與滲碳體片層相間的組織。性能跟片層間距有關,一般來說,片層間距越小,則強度、硬度、塑性、韌性均提高。
萊氏體:是由液體發生共晶轉變的產物,是奧氏體體與滲碳體的混合組織。常溫下為珠光體、滲碳體和共晶滲碳體的混合物,性能硬而脆。
貝氏體:是鋼等溫淬火後的產物。貝氏體具有較高的強韌性配合。在硬度相同的情況下貝氏體組織的耐磨性明顯優於馬氏體。
馬氏體:是碳溶於α-Fe的過飽和的固溶體。一般具有高的強度和硬度。可以分為兩種,板條馬氏體和片狀馬氏體。板條馬氏體具有良好的強韌性配合,而片狀馬氏體具有高的強度硬度,而塑韌性差。
2、?
3. 含碳量對鐵碳合金的組織和性能影響的大致規律
規律是:在退火或熱軋狀態下,隨含碳量的增加,鋼的強度和硬度升高,而塑性和沖擊韌性下降。焊接性和冷彎性變差。
碳素鋼的性能主要取決於鋼的含碳量和顯微組織。在退火或熱軋狀態下﹐隨含碳量與鋼的強度和硬度成正比,而與塑性和沖擊韌性成反比。焊接性和冷彎性變差。所以工程結構用鋼,常限制含碳量。
鋼中含碳量、脫氧程度和含氮量對淬火時效都有很大影響,低碳鋼、脫氧不充分的沸騰鋼和含氮量較高的鋼發生淬火時效最顯著,含碳約0.3%的中碳鋼,由淬火時效所引起的性能變化已大為減弱。含碳約0.6%的高碳鋼,實際上不起時效硬化作用。
(3)鐵碳合金的基本性能是什麼擴展閱讀:
其它相關化學成分影響:
碳素鋼中的殘余元素和雜質元素如錳、硅、鎳、磷、硫、氧、氮等,對碳素鋼的性能也有影響。這和影響有時互相加強,有時互相抵銷。例如:硫、氧、氮都能增加鋼的熱脆性,而適量的錳可減少或部分抵銷其熱脆性。
殘余元素除錳、鎳外都降低鋼的沖擊韌性,增加冷脆性。除硫和氧降低強度外,其它雜質元素均在不同程度上提高鋼的強度。幾乎所有的雜質元素都能降低鋼的塑性和焊接性。
4. 鐵碳合金的基本相和組織有哪些各用什麼符號表示分別敘述它們的定義及基本性能
鐵碳合金的基本相有三個即:
1、鐵素體:代表符號F,即碳在體心立方晶格"爾發"鐵中形成的固溶體。
2、奧氏體:代表符號A,即碳在面心立方晶格"伽馬"鐵中形成的固溶體。
3、滲碳體:代表符號Cem,即碳與鐵形成的化合物Fe3C。
4.、萊式體:代表符號Ld
5、馬氏體:代表符號M
5. 鐵碳合金中基本相是那些其機械性能如何
基本相有:鐵素體奧氏體滲碳體鐵素體的強度和硬度不高,但具有良好的塑性和韌性。奧氏體的硬度較低而塑性較高,易於鍛壓成型。滲碳體硬度很高而塑性和韌性幾乎為零,脆性大。
6. 鐵碳合金組織中什麼具有塑型變形能力和鍛壓性能
想要找到這樣一個材料的塑面形成的應用是可以找到具體的東西的。
7. 何謂鐵碳合金試舉例說明
鐵碳合金,是以鐵和碳為組元的二元合金。例如碳鋼和鑄鐵,就是一種工業鐵碳合金材料。
1、鑄鐵主要由鐵、碳和硅組成的合金的總稱。在這些合金中,含碳量超過在共晶溫度時能保留在奧氏體固溶體中的量。
2、碳鋼是含碳量在0.0218%~2.11%的鐵碳合金。也叫碳素鋼。一般還含有少量的硅、錳、硫、磷。一般碳鋼中含碳量較高則硬度越大,強度也越高,但塑性較低。
鐵碳合金中合金相的形成與純鐵的晶體結構和合金中碳的存在形式有關。純鐵有三種異構態:912℃以下的體心立方晶體結構,稱α-Fe;面心立方晶體結構來自912~1394℃,稱為γ-Fe;體心立方結構在1394℃,也叫δ-Fe。
在液態下,碳和鐵在低於7%碳的范圍內完全可溶;在固態下,碳在鐵中的溶解度是有限的,溶解度取決於鐵(溶劑)的晶體結構。
(7)鐵碳合金的基本性能是什麼擴展閱讀:
鐵碳合金由含碳量不同被分為碳鋼、鑄鐵兩大類材料,鑄鐵具有良好的鑄造性能,屬於脆性材料,具有較高的強度和硬度。碳鋼具有一般的鑄造性能,但其綜合力學性能優於鑄鐵。
因此,對於結構復雜、靜載荷較大的零件,應選用鑄鐵。對於形狀復雜、具有一定力學性能、能承受一定動載荷的零件,可考慮採用碳鋼或合金鋼。
8. 鐵碳合金中的基本結構、基本相、組織是什麼 金屬材料與熱處理中的鐵碳合金的基本組織與性能
鐵碳合金(iron—carbon alloy)
以鐵和碳為組元的二元合金.鐵基材料中應用最多的一類——碳鋼和鑄鐵,就是一種工業鐵碳合金材料.鋼鐵材料適用范圍廣闊的原因,首先在於可用的成分跨度大,從近於無碳的工業純鐵到含碳4%左右的鑄鐵,在此范圍內合金的相結構和微觀組織都發生很大的變化;另外,還在於可採用各種熱加工工藝,尤其金屬熱處理技術,大幅度地改變某一成分合金的組織和性能.
鐵碳合金中合金相的形成,與純鐵的晶體結構及碳在合金中的存在形式有關.純鐵有三種同素異構狀態:912℃以下為體心立方晶體結構:稱α-Fe;912~1394℃為面心立方晶體結構,稱γ-Fe;1394~1538℃(熔點),又呈體心立方,稱δ-Fe.在液態,在低於7%碳范圍,碳和鐵可完全互溶;在固態,碳在鐵中的溶解是有限的,並且溶解度取決於鐵(溶劑)的晶體結構.與鐵的三種同素異構物相對應,碳在鐵中形成的固溶體有三種:α固溶體(鐵素體)、γ固溶體(奧氏體)和δ固溶體(8鐵素體).這些固溶體中,鐵原子的空間分布與α-Fe、γ-Fe和δ-Fe一致,碳原子的尺寸遠比鐵原子為小,在固溶體中它處於點陣的間隙位置,造成點陣畸變.碳在γ-Fe中的溶解度最大,但不超過2.11%;碳在α-Fe中的溶解度不超過0.0218%;而在δ6-Fe中不超過0.09%.當鐵碳合金的碳含量超過在鐵中的溶解度時,多餘的碳可以以鐵的碳化物形式或以單質狀態(石墨)存在於合金中,可形成一系列碳化物,其中Fe3C(滲碳體,6.69%C)是亞穩相,它是具有復雜結構的間隙化合物.石墨是鐵碳合金的穩定平衡相,具有簡單六方結構.Fe3C有可能分解成鐵和石墨穩定相,但該過程在室溫下是極其緩慢的.
工業上獲得廣泛應用的碳鋼和鑄鐵就是鐵碳合金,含碳低於2.11%的鐵碳合金稱為鋼,含碳高於2.11%的合金稱為鑄鐵.在碳鋼和鑄鐵中除碳之外,還含有硅、錳、硫、磷、氮、氫、氧等一些雜質,這些雜質是在冶煉過程中由生鐵、脫氧劑和燃料等帶入的.這些雜質對鋼鐵性能產生影響.
碳鋼一般按含碳量、用途、質量和冶煉方法分類.按含碳量可分為:低碳鋼(C
9. 鐵碳合金中五種滲碳體組織形態特徵及對合金性能的影響
鐵碳合金中五種滲碳體為:一次滲碳體、二次滲碳體、三次滲碳體、共晶滲碳體、共析滲碳體。
一次滲碳體:是直接從液相結晶出的,形態是大而長的粗大片狀,可以提高過共晶白口鑄鐵的硬度,但降低強度和塑韌性,增加脆性。
2、二次滲碳體:是超過奧氏體中的碳的溶解度而從奧氏體中析出的,形態為沿著原奧氏體晶界呈現網狀,可以降低鋼的強度,增加脆性,應該消除。
3、三次滲碳體:是超過鐵素體中的碳的溶解度而從鐵素體中析出的,形態為沿著原鐵素體晶界呈現不連續條狀分布,由於含量很低,才0.33%,因此,對鐵碳合金性能沒有什麼影響。
4、共晶滲碳體:是發生共晶轉變生產的滲碳體。形態為魚骨狀,可以降低鑄鐵的強度,增加硬度和耐磨性,有時有不利的影響,比如增加脆性,這個時候應該通過石墨化退火來消除。
5、共析滲碳體:是發生共析轉變生產的滲碳體。形態為層片狀,可以提高鋼的強度、硬度,降低塑性韌性。
(9)鐵碳合金的基本性能是什麼擴展閱讀:
加工工藝:
鋼中滲碳體以各種形態存在,外形和成分有很大差異。一次滲碳體多在樹枝晶間處析出,呈塊狀,角部不尖銳;共晶滲碳體呈骨骼狀,破碎後呈多角形塊狀;二次滲碳體多在晶界處或晶內,可能是帶狀、網狀或針狀;共析滲碳體呈片狀,退火、回火後呈球狀或粒狀。
在金相圖譜中滲碳體白亮,退火狀態呈珠光色。一次滲碳體和破碎的共晶滲碳體只有在萊氏體鋼絲,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能見到。
只要熱加工工藝得當,冷拉用盤條中的一次滲碳體塊度應較小、無尖角,共晶碳化物應破碎成小塊、角部要圓滑,否則根本無法拉拔,滲碳體帶輕度稜角的盤條,可以通過正火後球化退火+輕度(Q020%)拉拔+高溫再結晶退火的方法加以挽救。
帶狀和網狀滲碳體也是拉絲用盤條中不應出現的組織,這兩種組織提高鋼的脆性,不利於鋼絲加工成形,顯著降低成品鋼絲的切削性能和淬火均勻性,對網狀2.5級的盤條可用正火的方法改善網狀,一般來說鋼絲經冷拉-退火兩次以上循環,網狀可降低0.5-1級。
10. 鐵碳合金的成分與性能
鐵碳合金
鐵碳合金是鋼和鐵的總稱,是工業上應用最廣泛的合金。鐵碳合金是以鐵為基本元素,以碳為主加元素組成的合金。在液態時,鐵和碳可以無限互溶。在固態時,碳溶於鐵中形成固溶體。當含碳量超過碳在鐵中的固態溶解度時,則出現金屬化合物。此外,還可以形成由固溶體和金屬化合物組成的機械混合物。
下面分述鐵碳合金在固態下出現的幾種基本組織。
● 鐵素體
鐵素體是碳溶解在a-Fe中的間隙固溶體,常用符號F表示。它仍保持的體心立方晶格,其溶碳能力很小,常溫下僅能溶解為0.0008%的碳,在727℃時最大的溶碳能力為0.02%。
由於鐵素體含碳量很低,其性能與純鐵相似,塑性、韌性很好,伸長率δ=45%~50%。強度、硬度較低,σb≈250MPa,而HBS=80。
● 奧氏體
奧氏體是碳溶解在γ-Fe中的間隙固溶體,常用符號A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力較大,在727℃時溶碳為ωc=0.77%,1148℃時可溶碳2.11%。奧氏體是在大於727℃高溫下才能穩定存在的組織。奧氏體塑性好,是絕大多數鋼種在高溫下進行壓力加工時所要求的組織。奧氏體是沒有磁性的。
● 滲碳體
滲碳體是鐵與碳形成的金屬化合物,其化學式為Fe3C。滲碳體的含碳量為ωc=6.69%,熔點為1227℃。其晶格為復雜的正交晶格,硬度很高HBW=800,塑性、韌性幾乎為零,脆性很大。
在鐵碳合金中有不同形態的滲碳體,其數量、形態與分布對鐵碳合金的性能有直接影響。
● 珠光體
珠光體是奧氏體發生共析轉變所形成的鐵素體與滲碳體的共析體。其形態為鐵素體薄層和滲碳體薄層交替重疊的層狀復相物,也稱片裝珠光體。用符號P表示,含碳量為ωc=0.77%。其力學性能介於鐵素體與滲碳體之間,決定於珠光體片層間距,即一層鐵素體與一層滲碳體厚度和的平均值。
● 萊氏體
萊氏體是液態鐵碳合金發生共晶轉變形成的奧氏體和滲碳體所組成的共晶體,其含碳量為ωc=4.3%。當溫度高於727℃時,萊氏體由奧氏體和滲碳體組成,用符號Ld表示。在低於727℃時,萊氏體是由珠光體和滲碳體組成,用符號Ld』表示,稱為變態萊氏體。因萊氏體的基體是硬而脆的滲碳體,所以硬度高,塑性很差。