⑴ 簡述航空金屬材料常用的防腐措施
飛機結構中最常見的金屬腐蝕有︰麻點腐蝕(pitting corrosion)、異電位腐蝕(galvanic corrosion)、鱗落腐蝕(exfoliation)、應力腐蝕(stress corrosion),以下分別就其原因、現象、預防或處置方式進行探討。
麻點腐蝕
某些金屬在大氣環境下,表面會形成一薄膜而失去相對的化學活性,而使腐蝕行為變弱,此種現象稱為鈍化(passivity),如︰不銹鋼、鋁、鉛、鈦等合金均具有此特性。麻點腐蝕專發生於具有鈍化膜的金屬表面上,其中以不銹鋼最容易發生。
麻點腐蝕是一種局部的腐蝕現象,金屬表面呈現多處點狀的銹蝕,直徑可由0.002到0.2公分,腐蝕方向為垂直向下侵蝕,發生原因是由於環境或金屬表面的性質不均勻(如︰表面缺陷、成份不均等),導致環境中的氯離子被吸附在金屬表面某些點上,使鈍化膜破壞生成微小的孔洞,孔洞底部因空氣不流通缺氧而形成陽極,孔洞外圍則因氧氣充足形成陰極,在陰陽兩極的電化學反應下,金屬表面就發生麻點腐蝕。
圖1 不銹鋼表面的麻點腐蝕
麻點腐蝕的危險在於其外表特徵微小而難以察覺及預防,以致結構已有嚴重的麻點腐蝕仍不自知,造成結構突然的意外破壞。
金屬表面的小刮痕或刻痕,很容易導致麻點腐蝕的發生,因此要防止此種腐蝕,金屬表面鏡面(mirror polish)處理是個相當有效的方式。
異電位腐蝕
異電位腐蝕的現象可說是電鍍的逆過程,電鍍時兩根金屬棒分別接於直流電源的陽極和陰極,並置於電解液中形成電導通狀態,陽極的金屬棒在電解液中會溶解成金屬正離子和電子,金屬正離子會被陰極金屬棒所吸引,和其電子結合成金屬附著沉積於表面上;電子則在直流電源的驅動下去補充陰極金屬棒所失去的電子。在這個過程中,陽極的金屬棒因持續溶解而逐漸被「腐蝕"。
同樣的道理,當兩種或兩種以上不同的金屬材料搭接成電導通狀態時,因為彼此間的電位(potential)不同,材料間就會有電流通過,加上潮濕的環境有類似電解液的功用,致其中某一材料會產生坑洞狀的腐蝕,並有硫化物、氯化物(chloride)、氧化物的沉積。被腐蝕的材料稱為陽性(anodic)或活性(active)材料,未被腐蝕的材料則稱為陰性(cathodic)或惰性(passive)材料。
圖2 鎂金屬表面與不銹鋼件接觸面產生的電位腐蝕
一般而言,會影響異電位腐蝕速率的因素有:
組成成分:不銹鋼表面的鉻(chromium)若和鐵混合成合金狀態,則此不銹鋼成為活性材料;若成氧化鉻的型態,則成為惰性材料。後者也是不銹鋼和鋁合金搭接時,為防止異電位腐蝕而實施表面鈍化處理(passivating treatment)的原理。
相對面積:異電位腐蝕的速率和惰性/活性材料的面積比成正比,若大面積的活性材料和小面積的惰性材料相搭接,則大面積下電流密度會被稀釋,活性材料可能就不會被腐蝕。反過來說,小面積的活性材料和大面積的惰性材料相搭接,則由於電流密度的增加,活性材料很快就會被腐蝕殆盡。
極性改變:在某些情況下,相搭接的金屬極性會改變,使腐蝕的發生位置和預期相反。例如鐵和鋅搭接時,在含有硝酸鹽(nitrate)或重碳酸鹽(bicarbonate)的溶液中,當溫度超過140℉時,電極性會改變。其原因目前仍不清楚,不過一般相信和腐蝕物的導電度有關。最常見的例子是鋁梯中的鋼制螺栓,雖然鋁合金的電位較高,但實際情況是鋼制螺栓腐蝕很快,而鋁梯則沒有什麼影響。
要防止異電位腐蝕,相互搭接的各結構零組件得挑選電位相近的材料,注意配對的材料是否有異電位腐蝕的顧慮。各種材料彼此間的影響程度是根據相互間的相對電位差而定,差距越大,異電位腐蝕越激烈。
通過對幾種常見金屬的相對活性比較,位置越往上的材料其電位越高,活性也越大,容易被腐蝕;位置越往下的材料其電位越低,惰性也越大,有免於被腐蝕的保護作用。
如果非得使用不同類型的材料,可以用不導電的分隔物把兩材料分開,讓彼此完全絕緣,一般也可以用鉻酸鹽(chromate)或環氧樹脂(epoxyresin)塗裝做阻隔,但前提是這些塗層不會受到機械性的破壞。若實在無法解決,就得先防患未然,將活性零件做得大一些,或是做成容易更換的零件。
在以往飛機工業未使用先進復合材料(Advanced Composite Material)前,所使用的材料主要是鋁和經過鈍化處理的不銹鋼,異電位腐蝕較不常見,但隨著對性能及隱身性的要求,新一代戰機已廣泛採用此種強度高、重量輕、雷達不易探測的新材料。先進復合材料中的石墨(graphite)纖維和鋁的電位差很大,兩者交界面有異電位腐蝕的顧慮,地面維護人員在平日維修時要特別注意。
圖3 常見金屬的相對活性比較
鱗落腐蝕
顧名思義,鱗落腐蝕的外觀會有如魚鱗片般的迭層剝落,這種腐蝕具有明顯的方向性,通常會平行於滾制(rolled)或射出成形(extruded)的面,侵蝕被拉長的材料晶粒,造成表面結構的脫層(delamination)或形成多層面(stratification)。
環境因素是造成鱗落腐蝕的主因,例如環境中有氯化物和溴化物(bromide)離子的存在、高溫、酸性的環境、間歇性的乾和濕……等,後者尤其會產生不可溶解的腐蝕物,加快腐蝕速率。
在材料表面塗裝底漆及化學保護膜可改善鱗落腐蝕抵抗力,不過這只能延緩鱗落腐蝕發生的時間,無法完全防止,且一旦此保護層被腐蝕,則底下的材料將處於無保護狀態,短時間內會被腐蝕而破碎。
鱗落腐蝕的一般處理原則是磨除腐蝕區域,再加以適當的表面防蝕處理。
圖4 T-37教練機角條鱗落腐蝕
應力腐蝕
應力腐蝕是材料在化學侵蝕環境下與機械性拉伸應力同時作用下的結果。一般的腐蝕是以材料被剝蝕的型態出現,而應力腐蝕則以裂紋的型態出現,且表面幾乎沒有任何腐蝕物堆積的現象,因此很容易被忽略,形成潛伏的危險因素。造成應力腐蝕的四個基本條件是:敏感性合金(susceptible alloy)、侵蝕環境、施加或殘余拉伸應力、以及時間。
應力腐蝕廣見於多種材料及環境中,根據統計,應力腐蝕損壞最常出現於低合金鋼(low alloy steel)、鋯(zirconium)、黃銅(brass)、鎂(magnesium)及鋁合金。這些材料應力腐蝕損壞的外表及行為都不相同,不過一般而言都具有一些共同的特性:
1.大部分破斷面在巨觀下是脆性(brittle)帶有少量的韌性撕裂(ctile tearing)現象,有些材料的破壞模式會介於韌性和脆性之間。
圖5 F-5前機身上縱梁應力腐蝕裂紋
2.一定是拉伸應力(tensile stress)和環境同時作用的結果,輪流作用不會產生應力腐蝕,且應力大小沒有絕對的關系。應力大,環境的因素就比較小;應力小,環境的因素就比較大。
3.材料表面的氧化膜受到機械或化學外力的破壞形成小凹窪(pit),應力腐蝕初始裂紋(initial crack)就由小凹窪的根部開始成長,這段期間應力的影響很小,腐蝕是主要的原動力(driving force),裂紋方向和主應力(principal stress)方向一致,與一般疲勞裂紋和主應力方向垂直的情況大不相同。
4.裂紋走向會在沿著晶粒邊界(intergranular)或穿透晶粒(transgranular)中二選一,全看材料、環境、應力大小這三者的組合而定。在不銹鋼材里,裂紋通常會穿透晶粒,且會造成一特別的晶體面(crystallographic),但在某些介質中,特別是腐蝕性溶液或是高氧化物漂白劑中,裂紋會沿著晶粒邊界。在高強度合金鋼中,裂紋會沿著晶粒邊界;鋁合金基本上亦是如此。
5.裂紋成長的過程本身就有自我催化(self-catalyzing)的作用,正在成長中的裂紋尖端局部之成長速率至少為疲勞裂紋的百倍以上,所以一旦發現應力腐蝕裂紋後就得盡快處置。
6.形成裂紋需特定的合金和環境,雖然許多環境都能產生相近的腐蝕生長速率,但不同的合金對應力腐蝕的敏感度差異甚大。
應力腐蝕裂紋必需在腐蝕表面上有拉伸應力,此拉伸應力可以是外加,也可以是殘余應力(resial stress),其中殘余應力更是問題的所在,因為它是隱藏的,在設計時常會被忽略。殘余應力的來源可能來自製造過程,如:冷加工時變形不均勻、熱處理後退火冷卻速率不同;或是來自裝配時的緊配(interference fit),鉚釘、螺栓變形等。
1970年前後進入美國空軍服役的F-5型戰斗機,因前機身上縱梁使用材料為對應力腐蝕甚為敏感的7075-T6鋁合金,致在服役相當時間後發生了應力腐蝕裂紋,美國空軍不得不在1990年代中期進行全機隊結構返廠修改,更換改變熱處理而提升抗腐蝕能力的7075-T73新制上縱梁。
航空史上最著名的應力腐蝕裂紋飛行安全事件,是發生於1988年4月28日的美國阿啰哈(Aloha)航空公司,一架波音737-200機身前段大片上蒙皮於飛行途中脫落,幸賴駕駛員的技術高超而平安落地。飛機失事前,已累積了35,496飛行小時,89,680次起降,是此型飛機全世界起降次數排名第二的飛機,(第一名是阿航的N73712)。
圖6 美國阿羅哈航空公司一架波音737客機前機身蒙皮因應力腐蝕裂紋而飛脫
波音737飛機的經濟服役壽命(economic service life)為20年,51,000飛行小時和75,000次的艙壓周期。根據阿航的飛航記錄,大約每1飛行小時會發生3次的艙壓周期,而波音的經濟壽命預測,是根據每1飛行小時1.5次的艙壓周期,因此阿航的艙壓累積周期數是波音預測的兩倍,而在加艙壓的機身內,艙壓周期是造成疲勞裂紋的最主要因素。失事後的調查結果也發現機身上下蒙皮迭接處多顆鉚釘孔邊,早已各自存在著相當長度的應力腐蝕裂紋,這些裂紋在失事時的艙壓作用下串連成一條長長的裂紋,毫無阻力地繼續向前延伸,引起艙內失控的泄壓,造成蒙皮撕裂而飛脫。
圖7 阿羅哈航空公司失事客機的蒙皮應力腐蝕裂紋型態
由於應力腐蝕必需是應力、敏感性合金、以及特定環境下三者同時作用才會產生,故若要防止應力腐蝕,可從改變這些因素來著手。
降低應力:這有好幾種方法,如:增加材料厚度或降低負載都是可行的方式。如果零件因重量關系無法增厚,可在表面上用珠擊(shot peening)或滾壓(surface rolling)的方式加上壓縮殘余應力(compressive resial stress)。
改變環境:抹去結構表面上沉積的水氣、污物、清潔劑殘痕等,都是很有效的預防措施。
更換材料:這是最方便的作法,若無法改變應力和環境,這也是唯一的對策。一般是改用不同熱處理方式以增強抗腐蝕能力的同型號材料,但若改用其他材料,如︰鋁合金改用鋁鋰(aluminum-lithium)合金,鋼改用鈦合金……等,就得一並考慮更改材料後全機重心改變、震動模態(vibration mode)變更、與鄰近材料的異電位腐蝕……等相關問題。
表面處理:陽極化(anodize)或陰極化(cathodic)表面處理都會在材料表面形成一保護膜,降低外界的腐蝕作用,但此種處理會降低鋁合金的疲勞強度,且陰極化處理也不能用在高強度鋼材,或是對氫脆化(hydrogen embrittlement)敏感的材料,因為表面陰極化會增加氫侵入的速度。若表面有裂紋,局部處理的效果也不好。
⑵ 鋁合金的表面防腐處理有哪些方法
1、表面研磨拋光處理
2、表面噴砂拋丸處理
3、表面拉絲處理
這三條都是處理的素鋁,出來的都是鋁本色,應該是半成品或做工業鋁材的零部件用。
建築鋁材表面還有很多處理方式,我所了解的按檔次依次是
陽極氧化(大多還是鋁本色)、靜電粉末噴塗(顏色豐富,物美價廉,用的最多)、電泳(主要就是亮閃閃的K金、K銀、香檳色)、氟碳噴塗(顏色豐富,耐候性強,價格較高)、熱轉印(主要是木紋轉印,呈現木材紋理,好看,但和木頭沒法比,價格挺高,但也不是貴到離譜)。
⑶ 鋁合金怎麼防腐
鋁合金防腐的方法:
1、表面研磨拋光處理。
2、表面噴砂拋丸處理。
3、表面拉絲處理。
鋁合金是工業中應用最廣泛的一類有色金屬結構材料,在航空、航天、汽車、機械製造、船舶及化學工業中已大量應用。工業經濟的飛速發展,對鋁合金焊接結構件的需求日益增多,使鋁合金的焊接性研究也隨之深入。目前鋁合金是應用最多的合金。
(3)鋁合金7075選用哪些防腐材料擴展閱讀:
鋁合金的物理特性:
鋁合金密度低,但強度比較高,接近或超過優質鋼,塑性好,可加工成各種型材,具有優良的導電性、導熱性和抗蝕性,工業上廣泛使用,使用量僅次於鋼。
一些鋁合金可以採用熱處理獲得良好的機械性能、物理性能和抗腐蝕性能。硬鋁合金屬AI—Cu—Mg系,一般含有少量的Mn,可熱處理強化.其特點是硬度大,但塑性較差。
超硬鋁屬Al一Cu—Mg—Zn系,可熱處理強化,是室溫下強度最高的鋁合金,但耐腐蝕性差,高溫軟化快。鍛鋁合金主要是Al—Zn—Mg—Si系合金,雖然加入元素種類多,但是含量少,因而具有優良的熱塑性,適宜鍛造,故又稱鍛造鋁合金
參考資料來源:網路—鋁合金
⑷ 7075鋁板有什麼特性
7075鋁板是一種冷處理鍛壓合金,強度高,硬度高,遠勝於軟鋼。7075鋁板是商用最強力合金之一,普通抗腐蝕性能、良好機械性能及陽極反應。細小晶粒使得深度鑽孔性能更好、工具耐磨性增強、螺紋滾制更與重不同、在密度要求較小時、硬度要求比較高的首選金屬材料。
7075是以鋅為主要合金元素的鋁合金,但有時也要少量添加了鎂、銅。其中超硬鋁合金就是含有鋅、鉛、鎂和銅合金,接近鋼材的硬度,可熱處理強化,屬高強度,可熱處理合金,抗腐蝕性能普通,良好機械性能。鋁7075是一種冷處理鍛壓合金,強度高,遠勝於軟鋼。7075鋁合金是商用最強力合金之一。普通抗腐蝕性能、良好機械性能及陽極反應。細小晶粒使得深度鑽孔性能更好,工具耐磨性增強,螺紋滾制更與重不同。常見鋁板、鋁合金的種類有:鋁帶、鋁箔、鋁板、鋁管、鏡面鋁板、合金鋁板、幕牆鋁板、花紋鋁板、壓花鋁板、鋁棒、防滑鋁板氧化鋁板、冷軋鋁板、熱軋鋁板、西南板(進口)鏡面鋁板、純鋁板、純鋁卷、深沖鋁板、燈飾鋁板、瓶蓋料,線路板、變壓器專用鋁帶、鋁箔、復合底板、防銹鋁板等。用於製造飛機結構及其他要求強度高、抗蝕性能強的高應力結構件,如飛機上、下翼面壁板,桁條,隔框等。固溶處理後塑性好,熱處理強化效果特別好,在150℃以下的有高的強度,並且有特別好的低溫強度,焊接性能差,有應力腐蝕開裂傾向,雙級時效可提高抗SCC性能。無錫阪神冶金提供。
⑸ 7075能做黑色陽極氧化嗎
7075鋁合金是可以做陽極氧化的。如果你氧化後出現可擦拭掉的灰黑色膜層,應該說是你的操作工藝有些問題。你可以試一試,出光後的零件在氧化槽中用1A/dm2的電流氧化40-60分鍾,溶液溫度控制在18-20℃。顏色填充後封閉用90-95℃的蒸餾水封閉10-15分鍾。希望對你有幫助。
⑹ 7075鋁合金和黃銅那個材料耐腐蝕性好,
黃銅的耐腐蝕性比7075鋁合金好。
7075是一種冷處理鍛壓合金,強度高,遠勝於軟鋼。7075是商用最強力合金之一。普通抗腐蝕性能、良好機械性能及陽極反應。細小晶粒使得深度鑽孔性能更好,工具耐磨性增強,螺紋滾制更與重不同。
黃銅有優良的導熱性和耐腐蝕性,可用作各種儀器零件。
⑺ 7075鋁合金 國標的成分是多少 急
7075鋁合金是一種冷處理鍛壓合金,強度高,遠勝於軟鋼。7075是商用最強力合金之一。
普通抗腐蝕性能、良好機械性能及陽極反應。細小晶粒使得深度鑽孔性能更好,工具耐磨性增強,螺紋滾制更與眾不同。鋅是7075中主要合金元素,向含3%-7.5%鋅的合金中添加鎂,可形成強化效果顯著的MgZn2,使該合金的熱處理效果遠遠勝過於鋁-鋅二元合金。提高合金中的鋅、鎂含量,抗拉強度會得到進一步的提高,但其抗應力腐蝕和抗剝落腐蝕的能力會隨之下降。經受熱處理,能到達非常高的強度特性。
7075材料一般都加入少量銅、鉻等合金,該系當中以7075-T651鋁合金尤為上品,被譽為鋁合金中最優良的產品,強度高、遠勝任何軟鋼。此合金並具有良好機械性及陽極反應。代表用途有航空航天、模具加工、機械設備、工裝夾具,特別用於製造飛機結構及其他要求強度高、抗腐蝕性能強的高應力結構體。
化學成分:
硅Si:0.40
鐵Fe: 0.50
銅Cu:1.2-2.0
錳Mn:0.30
鎂Mg:2.1-2.9
鉻Cr:0.18-0.28
鋅Zn:5.1-6.1
鈦Ti:0.20
鋁Al:餘量
其他: 單個:0.05 合計:0.15
相關名詞:7075鋁板,6061鋁板,鋁板,鋁管,全鋁,硬鋁板
⑻ 防腐鋁合金的主要合金元素有哪些
Si,Mg,Cu,Fe,Cr,Zn,Mn,Ni,Ti 防腐主要是鎂(Mg)
鋁鎂合金的耐蝕性最好,因此ADC5、ADC6是耐蝕性合金,它的凝固范圍很大,所以有熱脆性,鑄件易產生裂紋,難以鑄造。作為雜質的鎂(Mg),在AL-Cu-Si這種材料中,Mg2Si會使鑄件變脆,所以一般標准在0.3%以內。
⑼ 7075鋁合金的簡介
7075鋁合金是一種冷處理鍛壓合金,強度高,遠勝於軟鋼。7075是商用最強力合金之一。普通抗腐蝕性能、良好機械性能及陽極反應。細小晶粒使得深度鑽孔性能更好,工具耐磨性增強,螺紋滾制更與眾不同。鋅是7075中主要合金元素,向含3%-7.5%鋅的合金中添加鎂,可形成強化效果顯著的MgZn2,使該合金的熱處理效果遠遠勝過於鋁-鋅二元合金。提高合金中的鋅、鎂含量,抗拉強度會得到進一步的提高,但其抗應力腐蝕和抗剝落腐蝕的能力會隨之下降。經受熱處理,能到達非常高的強度特性。7075材料一般都加入少量銅、鉻等合金,該系當中以7075-T651鋁合金尤為上品,被譽為鋁合金中最優良的產品,強度高、遠勝任何軟鋼。此合金並具有良好機械性及陽極反應。代表用途有航空航天、模具加工、機械設備、工裝夾具,特別用於製造飛機結構及其他要求強度高、抗腐蝕性能強的高應力結構體。
國標:7075 GB/T3190--1996
日標:A7075 JIS H4000-1999 JIS H4080-1999
非標:76528 IS 733-2001 IS737-2001
俄標:B95/1950 rocT 4785-1974
EN:EN AW-7075/AlZn5.5MgCu EN573-3-1994
德標:AlZnMgCu1.5/3.4365 DIN172.1-1986/w-nr
法標:7075(A-Z5GU) NFA50-411 NFA50-451
英標:7075(C77S) BS 1470-1988
美標:7075/A97075 AA/UNS
⑽ 7075鋁合金用什麼切削液加工不腐蝕
7075是鋅鎂鋁合金,應使用含鋁緩蝕劑的半合成微乳液或高端乳化油進行加工,可滿足加工需要的潤滑性及防氧化性。