1. 白玻鋼化和鋼化玻璃是不是一回事啊
不是一回事。
1、白玻鋼化是指將普通的白玻經過鋼化這道工序將其加工成鋼化玻璃。玻璃鋼化一般有兩種,化學鋼化和物理鋼化。化學鋼化一般鋼化薄玻璃(3MM以下),物理鋼化一般鋼化厚玻璃(4MM及以上)。
2、鋼化玻璃:屬於安全玻璃。鋼化玻璃其實是一種預應力玻璃,為提高玻璃的強度,通常使用化學或物理的方法,在玻璃表面形成壓應力,玻璃承受外力時首先抵消表層應力,從而提高了承載能力,增強玻璃自身抗風壓性,寒暑性,沖擊性。
3、鋼化玻璃特性
①安全性
當玻璃受外力破壞時,碎片會成類似蜂窩狀的鈍角碎小顆粒,不易對人體造成嚴重的傷害。
②高強度
同等厚度的鋼化玻璃抗沖擊強度是普通玻璃的3~5倍,抗彎強度是普通玻璃的3~5倍。
③熱穩定性
鋼化玻璃具有良好的熱穩定性,能承受的溫差是普通玻璃的3倍,可承受300℃的溫差變化。
通常鋼化玻璃可以應用在以下幾個行業:
⒈建築,建築模板,裝飾行業(例:門窗、幕牆、室內裝修等)
⒉傢具製造行業(玻璃茶幾、傢具配套等)
⒊家電製造行業(電視機、烤箱、空調、冰箱等產品)
⒋電子、儀錶行業(手機、MP3、MP4、鍾表等多種數碼產品)
⒌汽車製造行業(汽車擋風玻璃等)
⒍日用製品行業(玻璃菜板等)
⒎特種行業(軍工用玻璃)
2. 玻璃如何鋼化
玻璃鋼化:
1、物理鋼化法
物理鋼化法的原理就是把玻璃加熱到適宜溫度後迅速冷卻,使玻璃表面急劇收縮,產生壓應力,而玻璃中層冷卻較慢,還來不及收縮,故形成張應力,使玻璃獲得較高的強度。一般來說冷卻強度越高,則玻璃強度越大。物理鋼化方法很多,按冷卻介質來分,可分為以下幾種:
2、化學鋼化法
化學鋼化法指的是通過化學方法改變玻璃表面組分,增加表面層壓應力,以增加玻璃的機械強度和熱穩定性的鋼化方法。由於它是通過離子交換使玻璃增強,所以又稱為離子交換增強法。根據交換離子的類型和離子交換的溫度又可分為低於轉變點度的離子交換法和高於轉變點溫度的離子交換法。
化學增強法的原理是:根據離子擴散的機理來改變玻璃的表面組成,在一定的溫度下把玻璃浸入到高溫熔鹽中,玻璃中的鹼金屬離子與熔鹽中的鹼金屬離子因擴散而發生相互交換,產生「擠塞」現象,使玻璃表面產生壓縮應力,從而提高玻璃的強度。
(2)薄玻璃鋼化擴展閱讀:
玻璃鋼化過程中問題:
玻璃鋼化爐在鋼化的過程中,一般都會產生風斑和應力斑,風斑是在冷卻過程中,由於受冷不均而導致玻璃應力不均而形成的,其在某種特殊角度下觀察會看到玻璃表面呈明暗相間的條紋。應力斑也是因為應力不均造成的,比如在加熱過程中,爐邊部和中部存在溫差而導致應力不均。應力斑目前還沒有辦法完全避免,但設計良好的鋼化設備可以較大程度的減少應力斑的可見性。
3. 鋼化玻璃分哪幾種
鋼化玻璃可分為物理鋼化玻璃和化學鋼化玻璃兩種。
1、物理鋼化玻璃
將普通平板玻璃在加熱爐中加熱到接近玻璃的軟化溫度(600℃)時,通過自身的形變消除內部應力,然後將玻璃移出加熱爐,再用多頭噴嘴將高壓冷空氣吹向玻璃的兩面,使其迅速且均勻地冷卻至室溫,即可製得鋼化玻璃。
2、化學鋼化玻璃
通過改變玻璃的表面的化學組成來提高玻璃的強度,一般是應用離子交換法進行鋼化。其方法是將含有鹼金屬離子的硅酸鹽玻璃,浸入到熔融狀態的鋰(Li+)鹽中,使玻璃表層的Na+或K+離子與Li+離子發生交換,表面形成Li+離子交換層。
(3)薄玻璃鋼化擴展閱讀:
鋼化玻璃破碎原因
鋼化玻璃是普通玻璃在高溫下迅速冷化形成的。具有硬度大,不易破碎的特點。破碎後會成顆粒狀,不易傷人。那麼鋼化玻璃為什麼會破碎。一般情況,有以下4種情況:
1、鋼化玻璃在溫差變化大的情況下會發生自爆的可能性
2、 鋼化玻璃本身會有千分之三的自爆率
3、 鋼化玻璃一般可以承受200多度的溫差,但是如果受熱集中溫差超過200度也會發生破碎。
4、被外力擊打破碎
鋼化玻璃的屬於安全玻璃,正常情況下不不容易破碎的,是絕大多數家庭玻璃的首選。
4. 玻璃怎麼鋼化
1 化學鋼化法
通過化學方法改變玻璃表面組分,增加表面層壓應力,以增加玻璃的機械強度和熱穩定性的鋼化方法稱為化學鋼化法。由於它是通過離子交換使玻璃增強,所以又稱為離子交換增強法。根據交換離子的類型和離子交換的溫度又可分為低於轉變點度的離子交換法(簡稱低溫法)和高於轉變點溫度的離子交換法(簡稱高溫法)。化學增強法的原理是:根據離子擴散的機理來改變玻璃的表面組成,在一定的溫度下把玻璃浸入到高溫熔鹽中,玻璃中的鹼金屬離子與熔鹽中的鹼金屬離子因擴散而發生相互交換,產生「擠塞」現象,使玻璃表面產生壓縮應力,從而提高玻璃的強度「 。
根據玻璃的網路結構學說,玻璃態的物質由無序的三維空間網路所構成,此網路是由含氧的離子多面體構成的,其中心被s Al 或P 離子所佔據。這些離子同氧離子一起構成網路,網路中填充鹼金屬離子(;nNa ,K )和鹼土金屬離子。其中鹼金屬離子較活潑,很易從玻璃內部析出,化學鋼化法就是基於離子自然擴散和相互擴散,以改變玻璃表面層的成分,從而形成表面壓應力層的。但離子交換法所產生的表面壓應力層比較薄,對表面微缺陷十分敏感,很小的表面劃傷,就足以使玻璃強度降低。
優缺點:化學增強玻璃強度與物理增強玻璃接近,熱穩定性好,處理溫度低,產品不易變形,且其產品不受厚度和幾何形狀的限制,使用設備簡單,產
品容易實現。但與物理鋼化玻璃相比,化學鋼化玻璃生產周期長(交換時間長達數十小時),效率低而生產成本高(熔鹽不能循環利用,且純度要求高),碎片與普通玻璃相仿,安全性差,且其性能不穩定(化學穩定性不好),機械強度和抗沖擊強度等物理性能易於消退(也稱松馳),強度隨時問衰減很快。
適用范圍:化學鋼化玻璃廣泛應用於不同厚度的平板玻璃,薄壁玻璃和瓶罐異形玻璃產品,還可用於防火玻璃。
2 物理鋼化法
物理鋼化的原理就是把玻璃加熱到適宜溫度後迅速冷卻,使玻璃表面急劇收縮,產生壓應力,而玻璃中層冷卻較慢,還來不及收縮,故形成張應力,使玻璃獲得較高的強度。一般來說冷卻強度越高,則玻璃強度越大。物理鋼化方法很多,按冷卻介質來分,可分為:氣體介質鋼化法、液體介質鋼化法、微粒鋼化法、霧鋼化法等 。
2.1 氣體介質鋼化法
氣體介質鋼化法,即風冷鋼化法。包括水平氣墊鋼化、水平輥道鋼化、垂直鋼化等方法。所謂風冷鋼化法就是將玻璃加熱至接近玻璃的軟化溫度(650~700。C),然後對其兩側同時吹以空氣使其迅速冷卻,以增加玻璃的機械強度和熱穩定性的生產方法。加熱玻璃的淬冷是用物理鋼化法生產鋼化玻璃的一個重要環節,對玻璃淬冷的基本要求是快速且均勻地冷卻,從而獲得均勻分布的應力,為得到均勻的冷卻玻璃,就必須要求冷卻裝置有效疏散熱風、便於清除偶然產生的碎玻璃並應盡量降低其噪音 。
優缺點:
風冷鋼化的優點是成本較低,產量較大,具有較高的機械強度、耐熱沖擊性(最大安全工作溫度可達287.78。c)和較高的耐熱梯度(能經受
204.44。C),而且風冷鋼化玻璃除能增強機械強度外,在破碎時能形成小碎片,可減輕對人體的傷害。但是對玻璃的厚度和形狀有一定的要求(國產設備所鋼化的玻璃最小厚度一般在3 mm左右),而且冷卻速度較慢,能耗高,對於薄玻璃,鋼化過程中還存在玻璃變形的問題,無法在光學質量要求較高的領域內應用。
適用范圍:目前空氣鋼化技術應用廣泛,空氣鋼化的玻璃多用在汽車、艦船、建築物上。
2.2 液體介質鋼化法液體介質鋼化法,即液冷法。所謂液冷法就是將玻璃加熱到接近軟化點後,放人盛滿液體的急冷槽內進行鋼化。此時作為冷卻介質可以採用鹽水,如硝酸鉀、亞硝酸鉀、硝酸鈉、亞硝酸鈉等的混合鹽水。此外,還可以採用礦物油作為冷卻介質,當然也可以向礦物油中加入甲苯或四氯化碳等添加劑。一些特製的淬冷油及硅酮油等也可以使用。在進行液體鋼化時,由於玻璃板的邊部先進入急冷槽,因此會出現應力不均引起的炸裂。為了解決這一問題,可先用風冷或噴液等進行預冷,然後再放入有機液中急冷。也可以在急冷槽中放入水和有機溶液,有機溶液浮於水上面,當把加熱後的玻璃放入槽中時,有機溶液起到預冷作用,吸收一部分熱量,然後進入水中快速冷卻除了採用浸入冷卻液體,也可以採用液體噴霧法,但一般多用浸入法。英國的Triplex公司,最早
在上世紀80年代就用液體介質法鋼化出了厚度為
0.75~1.5 mm的玻璃,結束了物理鋼化不能鋼化薄玻璃的歷史。液體鋼化法的難點是建立起合理的液冷法工藝制度,在液冷鋼化時應注意的兩個問題:一是
產生的過高的壓應力層,二是避免玻璃炸裂。
優缺點:
採用液體介質鋼化法,由於水的比熱較大,氣化熱高,因此用量大為減少,從而能耗降低,成本減少,而且冷卻速度快,安全性能高,變
形較小。由於在冷卻時是玻璃受熱後插入液體介質中,因此對於面積較大的玻璃板來說容易受熱不均而影響質量和成品率。
適用范圍:主要適用於鋼化各種面積不大的薄玻璃,如眼鏡玻璃。液晶顯示屏玻璃,光學儀器儀表用玻璃等。
2.3 微粒鋼化法
此法是把玻璃加熱到接近軟化溫度後,於流化床中經固體微粒一般為粒度小於200 m的氧化鋁微粒淬冷而使玻璃獲得增強的一種工藝方法。從理論上看用固體作為冷卻介質可以製造出更薄、更輕、強度更高的鋼化玻璃,故上個世紀70年代中期至80年代初期,英國、日本、比利時、德國等陸續將此技術應用於生產 。
優缺點:
微粒鋼化法可鋼化超薄玻璃。強度高、質量好。是目前製造高性能鋼化玻璃的一項先進技術。微粒鋼化新工藝與傳統的風鋼化工藝相比。冷卻介質的冷卻能大,適於鋼化超薄玻璃,節能效果顯著(節能約40%)。但微粒鋼化工藝的冷卻介質成本較高。
適用范圍:高強度,高精度的薄玻璃和超薄玻璃。
2.4 霧鋼化法
以霧化水做為冷卻介質,利用噴霧排氣裝備,可使玻璃在鋼化過程中冷卻更均勻,能耗更小,鋼化後的性能更好。噴霧排氣裝備由若干相互並列連接且排布在底板上的柵格形桶狀結構構成,每個桶狀結構由底板、隔板、噴嘴和若干排氣孑L構成。類似於氣體法,但使用的冷卻介質不是空氣,而是霧化水.特徵在於以霧化水為冷卻介質,對玻璃進行鋼化處理。水的比熱較大,所有的液體中水
的氣化熱也是最高的。在玻璃的鋼化過程中,水霧連續不斷地噴到加熱後的玻璃表面,呈微粒狀的霧化水迅速吸熱成為100℃的水,再氣化,利用水的比熱大及氣化熱高這一特點。將玻璃表面的大量熱瞬間帶走(吸收),使玻璃淬火鋼化,在玻璃表面造成永久性的壓縮應力,從而提高玻璃的抗張能力,使玻璃鋼化。水霧(霧化水)可由壓縮空氣噴吹法、蒸汽噴吹法或液壓噴霧法等噴向被加熱的玻璃表
面,由於霧化水接觸到赤熱的玻璃後會迅速吸熱並氣化膨脹,若令其自由擴散.則會影響玻璃的均勻冷卻,易使玻璃炸裂。為此。需設計有獨特的噴霧排氣設備,使得已氣化和膨脹的水氣可就地抽走。而不會沿著玻璃表面擴散」 」 。
霧鋼化優缺點:冷卻介質易得,成本低、不污染環境,還可鋼化一般氣體、液體及微粒鋼化所不能鋼化的薄玻璃。但冷卻均勻性較難控制。適用范圍:因其冷卻制度較難控制,目前應用較少。
5. 玻璃化學鋼化原理
化學鋼化玻璃是將玻璃置於熔融的鹼鹽中,使玻璃表層中的離子與熔鹽中的離子交換,由於交換後的體積變化,在玻璃的兩表面形成壓應力,內部形成張應力,從而達到提高玻璃強度的效果。化學鋼化玻璃強度高、熱穩定性好、表面不變形、可做適當切裁處理、無爆開現象。
化學鋼化玻璃其實是一種預應力玻璃,為提高玻璃的強度,通常使用化學或物理的方法,在玻璃表面形成壓應力,玻璃承受外力時首先抵消表層應力,從而提高了承載能力,增強玻璃自身抗風壓性,寒暑性,沖擊性等。
二、化學鋼化原理是什麼
化學鋼化玻璃是採用低溫離子交換工藝製造的,所謂低溫系是指交換溫度不高於玻璃轉變溫度的范圍內,是相對於高溫離子交換工藝在轉變溫度以上,軟化點以下的溫度范圍而言。低溫離子交換工藝的簡單原理是在400℃左右的鹼鹽溶液中,使玻璃表層中半徑較小的離子與溶液中半徑非常大的離子交換,比如玻璃中的鋰離子與溶液中的鉀或鈉離子交換,玻璃中的鈉離子與溶液中的鉀離子交換,利用鹼離子體積上的差別在玻璃表層形成嵌擠壓應力。大離子擠嵌進玻璃表層的數量與表層壓應力成正比,所以離子交換的數量與交換的表層高層度是增效果好果的關鍵指標。
離子交換鋼化玻璃與物理鋼化玻璃的應力分布不同,前者表面層的壓應力厚度較小,與其平衡的內部拉應力不大,這是化學鋼化玻璃的內部拉應力層達到破壞時也不像物理鋼化玻璃那樣碎成小片的原因。由於離子交換層較薄,所以化學鋼化玻璃方法用於增強薄玻璃效果顯著,對厚玻璃的增效果好果不甚明顯,特別適合增強2~4mm厚的玻璃。
6. 鋼化玻璃厚度一般多少
一般平面鋼化玻璃厚度有11、12、15、19mm等十二種;曲面鋼化玻璃厚度有11、15、19mm等八種,具體加工過後的厚度還是要看各廠家的設備和技術。但曲面(即彎鋼化)鋼化玻璃對每種厚度都有個最大的弧度限制。即平常所說的R。R為半徑。
一般情況下4~6mm玻璃在鋼化後變薄0.2~0.8mm,8~20mm玻璃在鋼化後變薄0.9~1.8mm。具體程度要根據設備來決定,這也是鋼化玻璃不能做鏡面的原因。
(6)薄玻璃鋼化擴展閱讀:
特點
1、安全性
當玻璃受外力破壞時,碎片會成類似蜂窩狀的鈍角碎小顆粒,不易對人體造成嚴重的傷害。
2、高強度
同等厚度的鋼化玻璃抗沖擊強度是普通玻璃的3~5倍,抗彎強度是普通玻璃的3~5倍。
3、熱穩定性
鋼化玻璃具有良好的熱穩定性,能承受的溫差是普通玻璃的3倍,可承受300℃的溫差變化。