Ⅰ 钛及钛合金精密铸造工艺
钛合金是以钛为基加入其他元素组成的合金。钛有两种同质异晶体:钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金(itaniumalloys)。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件
Ⅱ 钛合金及钛目前最常用的一种熔炼方法是哪种
真空自耗电弧炉熔炼法(简称VAR法)
随着真空技术的发展和计算机的应用,VAR法很快成为钛的成熟的工业生产技术,今天的钛及其合金铸锭绝大部分是使用此方法生产的。VAR法显著特点是功率消耗低、熔化速度高和良 好的质量重现性,VAR法熔炼的铸锭具有良好的结晶组织和均匀的化学成分。通常,成品铸锭应由VAR法熔炼制得. 至少要经过两次重熔。用VAR法生产钛铸锭,世界各国生产厂家使用的工艺基本相似,差别在于使用不同的电极制备方式和设备.电极制备可分为三大类,一是采用按份加料连续压制的整体电极,排除了电 极焊接工序:二是单块电极压制,拼焊成自耗电极。并通过等离子氩弧焊或真空焊焊接成一体;三是利用其它熔炼法制备铸造电极。
现代先进的VAR炉的技术特点和优势:
(1)全同轴功率输入,也就是说整个炉体高度上的完全同轴性,称 同轴供电’,减少偏析现象的产生;
(2)坩埚内电校可在X 轴向/Y轴向上微调;
(3)具有精确的电极称重系统,熔炼速率得到自动控制,实现了恒速熔炼’。保证了熔炼质量;
(4)保证每次熔炼的重复性和一致性;
(5)灵活性,即一台炉子能够生产多种锭型以及铸锭的 大型化,可大幅度提高生产率;
(6)具有良好的经济性。“同轴供电”方式可以避免因坩埚供给电流不平衡所造成的磁偏漏.减弱或消除感应磁场对熔炼产品的不利影响.并且提高了电效率,从而获得质量稳定的铸锭。“恒速熔炼”的目的是为了提高铸锭质量,通过先进的电控系统和重量传感器来确保熔炼过程中电弧的长度和熔化速率的恒定,从而控制了凝同过程。可以有效的防止偏析现象,保障 了铸锭的内在质量。现代钛熔炼用VAR炉除具有以上两大特点外,还实现了VAR炉的大型化,现代VAR炉可熔炼直径为1.5m,重32t的大型铸锭.vAR法是现代钛及钛合金标准的工业熔炼法.还有以下技术需 要解决.第一,电极制备方法.制备电极工艺非常繁琐.需要用昂贵的压力机将海绵钛、中间合金和返回残料压制成整体电极或单块小电扳.单块电极还需要焊接成自耗电极.同时为了保 证自耗电极成分的均匀性,还需要配置布料、称料、混料等相应的设施。第二,偶尔存在的偏析等冶金缺陷.如成分偏析和凝固偏析。介绍前者是由于杂质元素或合金元素在电极中分布不均匀 .熔炼时来不及平衡分布就凝固所产生;后者是由于原料或工艺过程偶尔带入了 高密度夹杂物(HDI) 和低密度夹杂物(LDI),这些夹杂物质在熔炼过程中无法彻底溶解,从而导致产生危 害极大的夹杂等冶金缺陷。
Ⅲ 钛合金材料加工方法
(1) 采用正角型几何来形状的刀片,以源减少切削力、切削热和工件的变形。
(2) 保持恒定的进给以避免工件的硬化,在切削过程中刀具要始终处于进给状态,铣削时径向吃刀量a e应为半径的30%。
(3) 采用高压大流量切削液,以保证加工过程的热稳定性,防止因温度过高导致工件表面变性和刀具损坏。
(4) 保持刀片刃口锋利,钝的刀具是热集结和磨损的原因,容易导致刀具失效。
(5) 尽可能在钛合金最软的状态加工,因为淬硬后材料变得更难加工,热处理提高了材料的强度并增加刀片的磨损。
(6) 使用大的刀尖圆弧半径或倒角切入,尽可能把更多的刀刃进入切削。这可以减少每一点的切削力和热量,防止局部破损。 在铣削钛合金时,各切削参数中切削速度对刀具寿命vc的影响最大,径向吃刀量(铣削深度)ae次之。
Ⅳ 钛合金材料适合金属注射成型工艺吗
可以,注射成型这类工艺适用大部分金属材料,根据不同情况选择熔融方式就可以了。对于钛合金这类熔点较高的金属,可以用激光熔融注射的工艺
Ⅳ 钛合金切削工艺的工艺措施有哪些内容
钛合金以其比强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削性差,长期以来在很大程度上制约了它的使用。随着工艺技术的发展,钛合金已广泛用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。但是钛合金导热性差致使切削温度很高,在切削过程中的这些特点使其变得十分困难。
一、钛合金工艺的特性分析
(1)钛合金导热系数低
因切削区散热慢不利于热平衡,在切削过程中散热和冷却效果很差,易于在切削区形成高温,零件变形回弹大,造成切削刀具扭矩增大、刃口磨损快耐用度降低。
(2)钛合金的导热系数低
使切削热积于切削刀附近的小面积区域内不易散发,前刀面摩擦力加大,不易排屑,切削热不易散发,加速刀具磨损。
(3)钛合金化学活性高
在高温下易与刀具材料起反应,形成溶敷、扩散,造成粘刀、烧刀、断刀等现象。
二、钛合金切削的工艺措施
(1)钛合金车削工艺
钛合金车削易获得较好的表面粗糙度,硬化不严重,但切削温度高刀具磨损快。针对这些特点主要在刀具、切削参数方面采取合适的刀具前后角、刀尖磨圆;较低的切削速度;适中的进给量;较深的切削深度;较大的刀具主偏角等。
(2)钛合金铣削工艺
钛合金铣削比车削困难,因为铣削是断续切削,并且切屑易与刀刃发生粘结形成崩刃,极大地降低了刀具的耐用度。因此对钛合金铣削一般采用高速高刀具顺铣;刀具前角应减小,后角应加大;铣削速度宜低;从工件装夹及设备方面提高工艺系统刚性。
(3)钛合金磨削工艺
磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结以及强烈的化学反应。为解决磨削钛合金采取的措施是选用合适的砂轮材料;稍低的砂轮硬度;较粗的砂轮粒度;稍低的砂轮速度;稍小的进给量。
(4)钛合金钻削工艺
钛合金钻削比较困难,常在过程中出现烧刀和断钻现象。这主要是由于钻头刃磨不良、排屑不及时、冷却不佳以及工艺刚性差等几方面原因造成的。因此在钛合金钻削时选用硬质合金刀具;加大刀具顶角、减少外缘前角、增大外缘后角;勤退刀并及时清除切屑。
(5)钛合金铰削工艺
钛合金铰削时刀具磨损不严重,使用硬质合金和高速钢铰刀均可。使用硬质合金铰刀时,要采取类似钻削的工艺系统刚度防止铰刀崩刃。钛合金铰孔时出现的主要问题是铰孔不光,可采用油石修窄铰刀刃带宽度,以免刃带与孔壁粘结;切削刃与校准部分转接处应为光滑圆弧,磨损后要及时修磨,并要求各齿圆弧大小一致。
(6)钛合金攻丝工艺
钛合金攻丝因为切屑细小,易与刀刃及工件粘结,造成表面粗糙度值大,扭矩大。攻丝时丝锥选用不当及操作不当极易造成硬化,效率极低并时有丝锥折断现象。因此要优先选用跳牙丝锥;切削锥角宜大;为便于排屑还可在切削锥部分磨出负倾角;尽量选用短丝锥以增加丝锥刚性。
三、钛合金切削油的选用
(1)如果使用含氢的切削油,切削过程中在高温下将分解释放出氢气,被钛吸收引起氢脆;也可能引起钛合金高温应力腐蚀开裂。
(2)部分以氯系添加剂为主要成分的切削油中在使用时还可能分解或挥发有毒气体,使用时宜采取安全防护措施;切削后应及时用清洗剂彻底清洗零件,清除含氯残留物。
(3)使用以硫化脂肪酸酯为主剂的钛合金切削油能很好的解决刀具磨损的问题,同时有利于排屑,避免积屑瘤的产生。
Ⅵ 钛合金(TA、TC、TB)阐述热处理工艺
钛的热处理方法
一.钛的基本热处理:
工业纯钛是单相α 型组织,虽然在890℃以上有α-β 的多型体转变,但由于
相变特点决定了它的强化效应比较弱,所以不能用调质等热处理提高工业纯钛的
机械强度。工业纯钛唯一的热处理就是退火。它的主要退火方法有三种:1 再结
晶退火 2 消应力退火 3 真空退火。前两种的目的都是消除应力和加工硬化效应,
以恢复塑性和成型能力。
工业纯钛在材料生产过程中加工硬度效应很大。图2-26 所示为经不同冷加
工后,TA2 屈服强度的升高,因此在钛材生产过程中,经冷、热加工后,为了恢
复塑性,得到稳定的细晶粒组织和均匀的机械性能,应进行再结晶退火。工业纯
钛的再结晶温度为550-650℃,因此再结晶退火温度应高于再结晶温度,但低于
α-β 相的转变温度。在650-700℃退火可获得最高的综合机械性能(因高于700℃
的退火将引起晶粒粗大,导致机械性能下降)。退火材料的冷加工硬化一般经
10-20 分钟退火就能消除。这种热处理一般在钛材生产单位进行。为了减少高温
热处理的气体污染并进一步脱除钛材在热加工过程中所吸收的氢气,目前一般钛
材生产厂家都要求真空气氛下的退火处理。
为了消除钛材在加工过程(如焊接、爆炸复合、制造过程中的轻度冷变形)
中的残余应力,应进行消应力热处理。
消应力退火一般不需要在真空或氩气气氛中进行,只要保持炉内气氛为微氧
化性即可。
二.钛及钛合金的热处理:
为了便于进行机械工业加并得到具有一定性能的钛和钛合金,以满足各种
产品对材料性能的要求,需要对钛及钛合金进行热处理。
1.工业纯钛(TA1、TA2、TA3)的热处理
α-钛合金从高温冷却到室温时,金相组织几乎全是α 相,不能起强化作用,
因此,目前对α-钛只需要进行消应力退火、再结晶退火和真空退火处理。前
两种是在微氧化炉中进行,而后者则应在真空炉中进行。
(一)消应力退火
为了消除钛和钛合金在熔铸、冷加工、机械加工及焊接等工艺过程中所产生
的内应力,以便于以后加工,并避免在使用过程中由于内应力存在而引起开裂破
坏,对α-钛应进行消除应力退火处理。消除应力退火温度不能过高、过低,因为
过高引起晶粒粗化,产生不必要的相变而影响机械性能,过低又会使应力得不到
消除,所以,一般是选在再结晶温度以下。对于工业纯钛来说,消除应力退火的
加热温度为500-600℃。加热时间应根据工件的厚度及保温时间来确定。为了提
高经济效果并防止不必要的氧化,应选择能消除大部分内应力的最短时间。工业
纯钛消除应力退火的保温时间为15-60 分钟,冷却方式一般采用空冷。
(二)再结晶退火(完全退火)
α-钛大部分在退火状态下使用,退火可降低强度、提高塑性,得到较好的综
合性能。为了尽可能减少在热处理过程中气体对钛材表面污染,热处理温度尽可
能选得低些。工业纯钛的退火温度高于再结晶温度,但低于α 向β 相转变的温度
120-200℃,这时所得到的是细晶粒组织。加热时间视工件厚度而定,冷却方式
一般采用空冷。对于工业纯钛来说,再结晶退火的加热温度为680-700℃,保温
时间为30-120 分钟。规范的选取要根据实际情况来定,通常加热温度高时,保
温时间要短些。
需要指出的是,退火温度高于700℃时,而且保温时间长时,将引起晶粒粗
化,导致机械性能下降,同时,晶粒一旦粗化,用现有的任何热处理方法都难以
使之细化。为了避免晶粒粗化,可采取下列两种措施:
1)尽可能将退火温度选在700℃以下。
2) 退火温度如果在700℃以上时,保温时间尽可能短些,但在一般情况下,
每mm 厚度不得少于3 分钟,对于所有工件来讲,不能小于15 分钟。
(三)真空退火
钛中的氢虽无强化作用,但危害性很大,能引起氢脆。氢在α-钛中的溶解
度很小,主要呈TiH2 化合物状态存在,而TiH2 只在300℃以下才稳定。如将α-
钛在真空中进行加热,就能将氢降低至0.1%以下。当钛中含氢量过多时需要除
氢,为了除氢或防止氧化,必须进行真空退火。真空退火的加热温度与保温时间,
与再结晶退火基本相同。冷却方式为在炉中缓冷却到适当的温度,然后才能开炉,
真空度不能低于5×10-4mmHg。
二.TC4(Ti-6Al-4V)的热处理
在钛合金中,TC4 是应用比较广泛的一种钛合金,通常它是在退火状态下
使用。对TC4 可进行消除应力退火、再结晶退火和固溶时效处理,退火后的组织
是α 和β 两相共存,但β 相含量较少,约占有10%。TC4 再结晶温度为750℃。
再结晶退火温度一般选在再结晶温度以上80~100℃(但在实际应用中,可视具
体情况而定,如表5-26),再结晶退火后TC4 的组织是等轴α 相+β 相,综合性
能良好。但对TC4 的退火处理只是一种相稳定化处理,为了充分民掘其优良性
能的潜力,则应进行强化处理。TC4 合金的α+β/β 相转变温度为980~990℃,固
溶处理温度一般选在α+β/β 转变温度以下40~100℃(视具体情况而定,如表5-26
所示),因为在β 相区固溶处理所得到的粗大魏氏体组织虽具有持久强度高和断
裂韧性高的优点,但拉伸塑性和疲劳强度均很低,而在α+β 相区固溶处理则无此
缺点。
规 范
类 型
温 度(℃) 时间(min) 冷 却 方 式
消除应力退火 550~650 30~240 空 冷
再结晶退火 750~800 60~120 空冷或随炉冷却至590℃后空冷
真空退火 790~815
固溶处理 850~950 30~60 水 淬
时效处理 480~560 4~8h 空 冷
时效处理是将固溶处理后的TC4 加热到中等温度,保持一定时间,随后空冷。
时效处理的目的是消除固溶处理所产生的对综合性能不利的α’相。固溶处理所产
生的淬火马氏体α’,在时效过程中发生迅速分解(相变相当复杂),使强度升高,
对此有两种看法:
1。认为由于α’分解出α+β,分解产物的弥散强化作用使TC4 强度升高。
2.认为在时效过程中,β 相分解形成ω 相,造成TC4 强化。
随着时效的进行,强度降低,对此现象也有两种不同的观点:
1.β 相的聚集使强度降低(与上述1 对应)。
2.ω 相的分解为一软化过程(与上述2 对应)。
时效温度和时间的选择要以获得最好的综合性能为准。在推荐的固溶及时效
范围内,最好通过时效硬化曲线来确定最佳工艺(如图5-28 所示。此曲线为TC4
经850℃固溶处理后,在不同温度下的时效硬化曲线)。低温时效(480-560℃)
要比大于700℃的高温时效好。因为在高温时的拉伸强度、持久和蠕变强度、断
裂韧性以及缺口拉伸性能等各方面,低温时效都比高温时效的好。
经固溶处理的TC4 综合性能比750-800℃ 退火处理后的综合性能要好。
需要指出的是,TC4 合金的加工态原始组织对热处理后的显微组织和力学性
能有较大的影响。对于高于相变温度,经过不同变形而形成的网兰状组织来说,
是不能被热处理所改变,在750~800℃退火后,基本保持原来的组织状态;对于
在相变温度以下进行加工而得到的α 及β 相组织,在750-800℃退火后,则能得
到等轴初生α相及转变的β相。前者的拉伸延性和断面收缩率都较后者低;但耐
高温性能和断裂韧性、抗热盐应力腐蚀都较高。
四.Ti-32Mo-2.5Nb 的热处理
Ti-32Mo-2.5Nb 是稳定β 型单相固溶合金,只需进行消除应力退火处理,
退火温度为750~800℃,保温一小时,冷却方式采用空冷、炉冷均可。
五.热处理中的几个问题
(一)污染问题
钛有极高的化学活性,几乎能与所有的元素作用。在室温下能与空气中的氧
起反应,生成一层极薄的氧化膜,氧化速率很小。但在高的温度下,除了氧化速
率加快并向金属晶格内扩散外,钛还与空气中的氢、氮、碳等起激烈的反应,也
能与气体化合物CO、CO2、H2O、NH4 及许多挥发性有机物反应。热处理金属元
素与工件表面的钛发生反应,使钛表面的化学成分发生变化,其中一些间隙元素
还能透过金属点阵,形成间隙固溶体。况且除氢以外,其他元素与钛的反应是不
可逆的。即使是氢,也不允许在最终热处理后,进行高温去除。间隙元素不仅影
响钛和钛合金的力学性能,而且还影响α+β/β 转变温度和一些相变过程,因此,
对于间隙元素,尤其是气体杂质元素对钛和钛合金的污染问题,在热处理中必须
引起重视。
(二)加热炉的选择
为在加热过程中防止污染,必须对不同要求的工件采取不同的措施。若在最
后经磨削或其他机械加工能将工件表面的污染层去除时,可在任何类型的加热炉
中进行加热,炉内气氛呈中性或微氧化性。为防止吸氢,炉内应绝对避免呈还原
性气氛。当工件的最后加工工序为热处理时,一定要采用真空炉(真空度要求在
1×10-4mmHg)或氩气气氛(氩气纯度在99.99%以上并且干燥)的加热炉中进行
加热。热处理完毕后,必要时用30%的硝酸加3%的氢氟酸其余为水,在50℃温
度下对工件进行酸洗,或轻微磨削,以除去表面污染层。
(四)加热方法
在热处理进行以前,首先要对加热炉炉膛进行清理,炉内不应有其他金属或
氧化皮;对于工件,则要求表面没有油污、水和氧化皮。
用真空炉对钛工件进行加热是防止污染的一种有效方法,但由于目前条件所
限,许多工厂还是采用一般加热炉。在一般加热炉中加热,根据需求的不同采用
不同的措施防止污染,比如:
1.根据工件的大小,可装在封闭的低碳钢容器中,抽真空后进行加热。若无真
空泵可通入惰性气体(氩气或氦气)进行保护,保护气体要多次反复通入、
排出,把空气完全排净。
2.使用涂层也是热处理中保护钛免遭污染的措施之一,在国外已取得一定的经
验。国内一些工厂也在采用高温漆和玻璃涂料作涂层。有人认为,目前对钛
所用的各种保护涂层,只能减少污染的深度,并不能完全免除污染。对每种
热处理,必须考虑允许的污染深度,选择合适有效的涂层,其中也包括热处
理后的剥离。
3.若用火焰加热,在加热过程中切忌火焰直接喷射在钛工件上,煤气火焰是钛
吸氢的主要根源之一。而用燃油加热,如若不慎将会引起钛工件过分氧化或
增碳。
(五) 冷却
钛和钛合金热处理的冷却方式主要是空冷或炉冷,也有采用油冷或风扇冷却
的。淬火介质可用低粘度油或含3%NaOH 的水溶液,但通常使用最广泛的淬火
介质是水。
只要能满足钛和钛合金对冷却速度的要求。一般钢的热处理所采用的冷却装
置对钛都适用。
Ⅶ 钛合金的表面处理一般用什么方法
深圳实钛科技:钛合金的表面处理,一般是指处理钛合金的表面反映回层,因为表面反应答层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。
1. 喷砂:
钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时, 砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。
2. 酸洗:
酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但 HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5 %左右,HNO3的浓度在15%~30%左右为宜。
Ⅷ 钛合金的加工方式是什么你知道吗
钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。但钛合金的硬度只是难于切削加工的一个方面,关键在于钛合金本身化学、物理、力学性能间的综合对其切削加工性的影响。钛合金有如下切削特点:变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。切削温度高:由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。
冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。
Ⅸ 钛合金用途和生产工艺
钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。现在主要用于人造地球卫星、登月舱、载人飞船和航天飞机
,生产工艺不大知道