『壹』 合金钢中的合金元素起哪些作用
钢是以铁为基本成分的多元素金属。纯铁有很好的塑性及韧性,但强度很低。所以,总要根据不同需要加入不同的元素,以改善钢的性能。主要元素的作用如下:
碳(c)碳是钢中的主要元素,随着钢中含碳量的增加,钢的常温强度、硬度提高,但塑性、韧性及焊接能降低。所以,锅炉承压元件用钢的含碳量一般为0.1%~0.25%。
锰(mn)锰可以提高钢的常温强度、硬度及耐磨性,含量高时,焊接应力增加。锰可使钢的高温短时强度提高,但对持久强度和蠕变极限及没有明显的影响。
钼(mo)和铬(cr)钼和铬都能提高钢的强度。铬对提高钢的高温组织稳定性能——抵制珠光体球化、石墨化、抗高温氧化有明显效果。并能提高抗腐蚀性。但含铬高的钢,焊接裂纹敏感性强,温差应力也大。钼对提高钢的持久强高度有明显作用。钼有石墨化倾向可加铬防病止,铬的脆化可用钼化可用防止,二者共存可以提高钢的综合性能。
钒(v)钒在钢中能提高高温组织稳定性,还能抵消铬对焊接性能的不利影响。
钛(ti)钛可提高钢的持久强度,在抵合金钢中,还可改善钢的焊接性能。
钨(w)钨可提高钢的持久强度及高温硬度。
硅(si)硅能提高钢的强度、耐磨性及抗氧化能力。与铬共存时,可提高抗高温氧化能力,也可提高在烟气中的抗腐蚀性能。
铌(nb)铌与钛的作用相同,可提高钢有热强性。
硼(b)硼的突出作用是提高钢的淬透性。在耐热钢中可提高钢的热强性及持久塑性。
『贰』 记忆合金的应用
形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。
1、航空航天工业:形状记忆合金已应用到航空和太空装置。如用在军用飞机的液压系统中的低温配合连接件,欧洲和美国正在研制用于直升飞机的智能水平旋翼中的形状记忆合金材料。
2、机械电子产品:1970 年美国用形状记忆合金制作 F-14 战斗上的低温配合连接器,随后有数以百万以上的连件的应用。
3、生物医疗:用于医学领域的 TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。
4、建筑结构:利用形状记忆合金的伪弹性性能和动阻尼特性,形状记忆合金被用于被动控制结构受地震影响,起到抗震的作用。应运于结构振动的主动阻尼控制等。
(2)生活中合金对抗震起到了什么作用扩展阅读:
记忆合金日常生活作用:
1、防烫伤阀 在家庭生活中,已开发的形状记忆阀可用来防止洗涤槽中、浴盆和浴室的热水意外烫伤;这些阀门也可用于旅馆和其他适宜的地方。
如果水龙头流出的水温达到可能烫伤人的温度(大约 48℃)时,形状记忆合金驱动阀门关闭,直到水温降到安全温度,阀门才重新打开。
2、眼镜框架 在眼镜框架的鼻梁和耳部装配 TiNi 合金可使人感到舒适并抗磨损,由于 TiNi 合金所具有的柔韧性已使它们广泛用于改变眼镜时尚界。
用超弹性 TiNi 合金丝做眼镜框架,即使镜片热膨胀,该形状记忆合金丝也能靠超弹性的恒定力夹牢镜片。这些超弹性合金制造的眼镜框架的变形能力很大,而普通的眼镜框则不能做到。
3、移动电话天线和火灾检查阀门 使用超弹性TiNi金属丝做蜂窝状电话天线是形状记忆合金的另一个应用。过去使用不锈钢天线,由于弯曲常常出现损坏问题。使用TiNi形状记忆合金丝移动电话天线,具有高抗破坏性受到人们普遍欢迎。
因此常用来制作蜂窝状电话天线和火灾检查阀门。火灾中,当局部地方升温时阀门会自动关闭,防止了危险气体进入。
这种特殊结构设计的优点是,它具有检查阀门的操作,然后又能复位到安全状态;这种火灾检查阀门在半导体制造业中得到使用,在半导体制造的扩散过程中使用了有毒的气体;这种火灾检查阀也可在化学和石油工厂应用。
『叁』 大多数的金属材料实际上是合金,请举出几个生活中的例子
常用合金
(1)钢铁
钢铁是铁与C、Si、Mn、P、S以及少量的其他元素所组成的合金。其中除Fe外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。
按含碳量不同,铁碳合金分为钢与生铁两大类,钢是含碳量为0.03%~2%的铁碳合金。碳钢是最常用的普通钢,冶炼方便、加工容易、价格低廉,而且在多数情况下能满足使用要求,所以应用十分普遍。按含碳量不同,碳钢又分为低碳钢、中碳钢和高碳钢。随含碳量升高,碳钢的硬度增加、韧性下降。合金钢又叫特种钢,在碳钢的基础上加入一种或多种合金元素,使钢的组织结构和性能发生变化,从而具有一些特殊性能,如高硬度、高耐磨性、高韧性、耐腐蚀性,等等。经常加入钢中的合金元素有Si、W、Mn、Cr、Ni、Mo、V、Ti等。我国合金钢的资源相当丰富,除Cr、Co不足,Mn品位较低外,W、Mo、V、Ti和稀土金属储量都很高。21世纪初,合金钢在钢的总产量中的比例将有大幅度增长。
含碳量2%~4.3%的铁碳合金称生铁。生铁硬而脆,但耐压耐磨。根据生铁中碳存在的形态不同又可分为白口铁、灰口铁和球墨铸铁。白口铁中碳以Fe3C形态分布,断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。碳以片状石墨形态分布的称灰口铁,断口呈银灰色,易切削,易铸,耐磨。若碳以球状石墨分布则称球墨铸铁,其机械性能、加工性能接近于钢。在铸铁中加入特种合金元素可得特种铸铁,如加入Cr,耐磨性可大幅度提高,在特种条件下有十分重要的应用。
(2)铝合金
铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为2.7 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用的各种铝合金。
铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。
目前高强度铝合金广泛应用于制造飞机、舰艇和载重汽车等,可增加它们的载重量以及提高运行速度,并具有抗海水侵蚀,避磁性等特点。
(3)铜合金
纯铜呈紫红色,故又称紫铜,有极好的导热、导电性,其导电性仅次于银而居金属的第二位。铜具有优良的化学稳定性和耐蚀性能,是优良的电工用金属材料。
工业中广泛使用的铜合金有黄铜、青铜和白铜等。
Cu与Zu的合金称黄铜,其中Cu占60%~90%、Zn占40%~10%,有优良的导热性和耐腐蚀性,可用作各种仪器零件。再如在黄铜中加入少量Sn,称为海军黄铜,具有很好的抗海水腐蚀的能力。在黄铜中加入少量的有润滑作用的Pb,可用作滑动轴承材料。
青铜是人类使用历史最久的金属材料,它是Cu�Sn合金。锡的加入明显地提高了铜的强度,并使其塑性得到改善,抗腐蚀性增强,因此锡青铜常用于制造齿轮等耐磨零部件和耐蚀配件。Sn较贵,目前已大量用Al、Si、Mn来代替Sn而得到一系列青铜合金。铝青铜的耐蚀性比锡青铜还好。铍青铜是强度最高的铜合金,它无磁性又有优异的抗腐蚀性能,是可与钢相竞争的弹簧材料。
白铜是Cu-Ni合金,有优异的耐蚀性和高的电阻,故可用作苛刻腐蚀条件下工作的零部件和电阻器的材料。
.特种合金
目前工业上应用的合金种类数以千计,现只简要地介绍其中几大类。
(1)耐蚀合金
金属材料在腐蚀性介质中所具有的抵抗介质侵蚀的能力,称金属的耐蚀性。纯金属中耐蚀性高的通常具备下述三个条件之一:
①热力学稳定性高的金属。通常可用其标准电极电势来判断,其数值较正者稳定性较高;较负者则稳定性较低。耐蚀性好的贵金属,如Pt、Au、Ag、Cu等就属于这一类。
②易于钝化的金属。不少金属可在氧化性介质中形成具有保护作用的致密氧化膜,这种现象称为钝化。金属中最容易钝化的是Ti、Zr、Ta、Nb、Cr和Al等。
③表面能生成难溶的和保护性能良好的腐蚀产物膜的金属。这种情况只有在金属处于特定的腐蚀介质中才出现,例如,Pb和Al在H2SO4溶液中,Fe在H3PO4溶液中,Mo在盐酸中以及Zn在大气中等。
因此,工业上根据上述原理,采用合金化方法获得一系列耐蚀合金,一般有相应的三种方法:
①提高金属或合金的热力学稳定性,即向原不耐蚀的金属或合金中加入热力学稳定性高的合金元素,使形成固溶体以及提高合金的电极电势,增强其耐蚀性。例如在Cu中加Au,在Ni中加入Cu、Cr等,即属此类。不过这种大量加入贵金属的办法,在工业结构材料中的应用是有限的。
②加入易钝化合金元素,如Cr、Ni、Mo等,可提高基体金属的耐蚀性。在钢中加入适量的Cr,即可制得铬系不锈钢。实验证明,在不锈钢中,含Cr量一般应大于13%时才能起抗蚀作用,Cr含量越高,其耐蚀性越好。这类不锈钢在氧化介质中有很好的抗蚀性,但在非氧化性介质如稀硫酸和盐酸中,耐蚀性较差。这是因为非氧化性酸不易使合金生成氧化膜,同时对氧化膜还有溶解作用。
③加入能促使合金表面生成致密的腐蚀产物保护膜的合金元素,是制取耐蚀合金的又一途径。例如,钢能耐大气腐蚀是由于其表面形成结构致密的化合物羟基氧化铁〔FeOx·(OH)23-2x〕,它能起保护作用。钢中加入Cu与P或P与Cr均可促进这种保护膜的生成,由此可用Cu、P或P、Cr制成耐大气腐蚀的低合金钢。
金属腐蚀是工业上危害最大的自发过程,因此耐蚀合金的开发与应用,有重大的社会意义和经济价值。
(2)耐热合金
这类合金又称高温合金,它对于在高温条件下的工业部门和应用技术领域有着重大的意义。
一般说,金属材料的熔点越高,其可使用的温度限度越高。这是因为随着温度的升高,金属材料的机械性能显著下降,氧化腐蚀的趋势相应增大,因此,一般的金属材料都只能在500 ℃~600 ℃下长期工作。能在高于700 ℃的高温下工作的金属通称耐热合金。“耐热”是指其在高温下能保持足够强度和良好的抗氧化性。
提高钢铁抗氧化性的途径有两条:一是在钢中加入Cr、Si、Al等合金元素,或者在钢的表面进行Cr、Si、Al合金化处理。它们在氧化性气氛中可很快生成一层致密的氧化膜,并牢固地附在钢的表面,从而有效地阻止氧化的继续进行。二是用各种方法在钢铁表面形成高熔点的氧化物、碳化物、氮化物等耐高温涂层。
提高钢铁高温强度的方法很多,从结构、性质的化学观点看,大致有两种主要方法:
一是增加钢中原子间在高温下的结合力。研究指出,金属中结合力,即金属键强度大小,主要与原子中未成对的电子数有关。从周期表中看,ⅥB元素金属键在同一周期内最强。因此,在钢中加入Cr、Mo、W等原子的效果最佳。
二是加入能形成各种碳化物或金属间化合物的元素,以使钢基体强化。由若干过渡金属与碳原子生成的碳化物属于间隙化合物,它们在金属键的基础上,又增加了共价键的成分,因此硬度极大,熔点很高。例如,加入W、Mo、V、Nb可生成WC、W2C、MoC、Mo2C、VC、NbC等碳化物,从而增加了钢铁的高温强度。
利用合金方法,除铁基耐热合金外,还可制得镍基、钼基、铌基和钨基耐热合金,它们在高温下具有良好的机械性能和化学稳定性。其中镍基合金是最优的超耐热金属材料,组织中基体是Ni�Cr�Co的固溶体和Ni3Al金属化合物,经处理后,其使用温度可达1 000 ℃~1 100 ℃。
(3)钛合金
钛是周期表中第IVB类元素,外观似钢,熔点达1 672 ℃,属难熔金属。钛在地壳中含量较丰富,远高于Cu、Zn、Sn、Pb等常见金属。我国钛的资源极为丰富,仅四川攀枝花地区发现的特大型钒钛磁铁矿中,伴生钛金属储量约达4.2亿吨,接近国外探明钛储量的总和。
纯钛机械性能强,可塑性好,易于加工,如有杂质,特别是O、N、C等元素存在,会提高钛的强度和硬度,但会降低其塑性,增加脆性。
钛是容易钝化的金属,且在含氧环境中,其钝化膜在受到破坏后还能自行愈合。因此,钛对空气、水和若干腐蚀介质都是稳定的。钛和钛合金有优异的耐蚀性,只能被氢氟酸和中等浓度的强碱溶液所侵蚀。特别是钛对海水很稳定,将钛或钛合金放入海水中数年,取出后,仍光亮如初,远优于不锈钢。
钛的另一重要特性是密度小。其强度是不锈钢的3.5倍,铝合金的1.3倍,是目前所有工业金属材料中最高的。
液态的钛几乎能溶解所有的金属,形成固溶体或金属化合物等各种合金。合金元素如Al、V、Zr、Sn、Si、Mo和Mn等的加入,可改善钛的性能,以适应不同部门的需要。例如,Ti-Al-Sn合金有很高的热稳定性,可在相当高的温度下长时间工作;以Ti-Al-V合金为代表的超塑性合金,可以50%~150%地伸长加工成型,其最大伸长可达到2 000%。而一般合金的塑性加工的伸长率最大不超过30%。
由于上述优异性能,钛享有“未来的金属”的美称。钛合金已广泛用于国民经济各部门,它是火箭、导弹和航天飞机不可缺少的材料。船舶、化工、电子器件和通讯设备以及若干轻工业部门中要大量应用钛合金,只是目前钛的价格较昂贵,限制了它的广泛使用。
(4)磁性合金
材料在外加磁场中,可表现出三种情况:①不被磁场所吸引的,叫反磁性材料;②微弱地被磁场所吸引的,叫顺磁性材料;③强烈地被磁场吸引的,称铁磁性材料,其磁性随外磁场的加强而急剧增高,并在外磁场移走后,仍能保留磁性。金属材料中,大多数过渡金属具有顺磁性;只有Fe、Co、Ni等少数金属是铁磁性的。
金属中组成永磁材料的主要元素是Fe、Co、Ni和某些稀土元素。目前使用的永磁合金有稀土�钴系、铁�铬�钴系和锰�铝�碳系合金。
磁性合金在电力、电子、计算机、自动控制和电光学等新兴技术领域中,有着日益广泛的应用。
『肆』 合金有什么优点
硬度大、耐热性好、抗腐蚀等等。
合金,是由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。一般通过熔合成均匀液体和凝固而得。
根据组成元素的数目,可分为二元合金、三元合金和多元合金。
(4)生活中合金对抗震起到了什么作用扩展阅读
常见合金
锰钢、不锈钢、黄铜、青铜、白铜、焊锡、硬铝等等。
1、钢铁
分类及性质
按含碳量不同,铁碳合金分为钢与生铁两大类。
钢是含碳量为0.03%~2%的铁碳合金。碳钢是最常用的普通钢,冶炼方便、加工容易、价格低廉,而且在多数情况下能满足使用要求,所以应用十分普遍。按含碳量不同,碳钢又分为低碳钢、中碳钢和高碳钢。
生铁硬而脆,但耐压耐磨。灰口铁和球墨铸铁。白口铁中碳以Fe3C断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。
2、铝合金
性质
铝合金的突出特点是密度小、强度高。
铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。
硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。
应用
高强度铝合金广泛应用于制造飞机、舰艇和载重汽车等,可增加它们的载重量以及提高运行速度,并具有抗海水侵蚀,避磁性等特点。
3、锌合金
性质
锌合金熔点低,流动性好,易熔焊,钎焊和塑性加工,在大气中耐腐蚀,残废料便于回收和重熔。
但蠕变强度低,易发生自然时效引起尺寸变化。熔融法制备,压铸或压力加工成材。按制造工艺可分为铸造锌合金和变形锌合金。
应用
锌合金的主要添加元素有铝,铜和镁等.锌合金按加工工艺可分为形变与铸造锌合金两类.铸造锌合金流动性和耐腐蚀性较好,适用于压铸仪表,汽车零件外壳等。
『伍』 合金钢中的主要合金元素都起什么作用 详细
合金钢中的主要合金元素都起什么作用?
关键词:
金元
合金钢中的主要合金元'>金元素都起什么作用?
钢是以铁为基本成分的多元素金属。纯铁有很好的塑性及韧性,但强度很低。所以,总要根据不同需要加入不同的元素,以改善钢的性能。主要元素的作用如下:
(1)碳(C)碳是钢中的主要元素,随着钢中含碳量的增加,钢的常温强度、硬度提高,但塑性、韧性及焊接能降低。所以,锅炉承压元件用钢的含碳量一般为0.1~0.25。
(2)锰(Mn)锰可以提高钢的常温强度、硬度及耐磨性,含量高时,焊接应力增加。锰可使钢的高温短时强度提高,但对持久强度和蠕变极限及没有明显的影响。
(3)钼(Mo)和铬(Cr)钼和铬都能提高钢的强度。铬对提高钢的高温组织稳定性能——抵制珠光体球化、石墨化、抗高温氧化有明显效果。并能提高抗腐蚀性。但含铬高的钢,焊接裂纹敏感性强,温差应力也大。钼对提高钢的持久强高度有明显作用。钼有石墨化倾向可加铬防病止,铬的脆化可用钼化可用防止,二者共存可以提高钢的综合性能。
(4)钒(V)钒在钢中能提高高温组织稳定性,还能抵消铬对焊接性能的不利影响。
(5)钛(Ti)钛可提高钢的持久强度,在抵合金钢中,还可改善钢的焊接性能。
(6)钨(W)钨可提高钢的持久强度及高温硬度。
(7)硅(Si)硅能提高钢的强度、耐磨性及抗氧化能力。与铬共存时,可提高抗高温氧化能力,也可提高在烟气中的抗腐蚀性能。
(8)铌(Nb)铌与钛的作用相同,可提高钢有热强性。
(9)硼(B)硼的突出作用是提高钢的淬透性。在耐热钢中可提高钢的热强性及持久塑性。
『陆』 合金的优缺点
合金的优点:
1、强度高
钛合金的密度一般在4.51g/立方厘米左右,仅为钢的60%,纯钛的密度才接近普通钢的密度,一些高强度钛合金超过了许多合金结构钢的强度。
2、热强度高
使用温度比铝合金高几网络,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。
3、抗蚀性好
钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强。
4、低温性能好
钛合金在低温和超低温下,仍能保持其力学性能。
5、化学活性大
钛的化学活性大,与大气中O、N、H、CO、CO2、水蒸气、氨气等产生强烈的化学反应。含碳量大于0.2%时,会在钛合金中形成硬质Tic。
合金的缺点:
1、及钛合金主要限制是在高温与其它材料的化学反应性差。
2、合金与一般传统的精炼、熔融和铸造技术不同,甚至经常造成模具的损坏
3、合金的价格变的十分昂贵,因此刚开始大多用在飞机结构、航空器,以及用在石油和化学工业等高科技工业。
(6)生活中合金对抗震起到了什么作用扩展阅读:
合金的生成常会改善元素单质的性质,例如,钢的强度大于其主要组成元素铁。合金的物理性质,例如密度、反应性、杨氏模量、导电性和导热性可能与合金的组成元素尚有类似之处,但是合金的抗拉强度和抗剪强度却通常与组成元素的性质有很大不同。这是由于合金与单质中的原子排列有很大差异。
少量的某种元素可能会对合金的性质造成很大的影响。例如,铁磁性合金中的杂质会使合金的性质发生变化。
不同于纯净金属的是,多数合金没有固定的熔点,温度处在熔化温度范围间时,混合物为固液并存状态。因此可以说,合金的熔点比组分金属低。参见低共熔混合物。常见的合金中,黄铜是由铜和锌的合金;青铜是锡和铜的合金,用于雕象、装饰品和教堂钟。一些国家的货币都会使用合金(如镍合金)。
『柒』 合金元素在钢中都有哪些作用
合金元素在钢中的作用
Mn
1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性
2、降低钢的临界冷却速度,提高钢的淬透性
3、稍稍改善钢的低温韧性
4、在高含量范围内,作为主要的奥氏体化元素
Si
1、强化铁素体,提高钢的强度和硬度
2、降低钢的临界冷却速度,提高钢的淬透性
3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性
4、磁钢中的主要合金元素(含量在0.40%范围内时,改善热裂倾向,含量高时,易形成柱状晶,增加热裂倾向。)
Cr
1、在低合金范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性
2、降低钢的临界冷却速度,提高钢的淬透性
3、提高钢的耐热性
4、在高合金范围内,使钢具有对强氧化性酸类等腐蚀介质的耐腐蚀能力
Mo
1、
强化铁素体,提高钢的强度和硬度
2、
降低钢的临界冷却速度,提高钢的淬透性
3、
提高钢的耐热性和高温强度
Ni
1、
提高钢的强度,而不降低其塑性,改善钢的低温韧性
2、
降低钢的临界冷却速度,提高钢的淬透性
3、
扩大奥氏体区,是奥氏体化的有效元素
4、
本身具有一定耐蚀性,对一些还原性酸类有良好的耐蚀能力
Al
1、
炼钢中起良好的脱氧作用
2、
细化钢的晶粒,提高钢的强度
3、提高钢的抗氧化性能,提高不锈钢对强氧化性酸类的耐蚀能力
RE
1、炼钢中起脱硫、去气、净化钢液作用
2、细化钢的晶粒,改善铸态组织
S:
1、
硫在钢中以FeS-Fe共晶体存在于钢的晶粒周界,降低钢的力学性能,优制钢含硫量一般应限制在0.04%以下。
2、
在机械制造中,有时为了改善某些钢的切削加工性能,人为将含硫量提高,以形成硫化物,起中断基体连续性的作用。
3、
硫含量的提高,增加铸件热裂倾向。
H:
炼钢过程中钢液从炉气中吸收氢
钢液中氢的溶解度随温度升高而提高,在缓慢凝固条件下,氢以针孔形态析出。快速凝固时,析出氢在铁的晶格内造成高应力状态,导致脆性。
N:
炼钢过程中钢液从炉气中吸收氮
1、
钢液中溶解的氮在凝固过程中因溶解度降低而析出,并与钢中的Si、Al、Zr等元素化合,生成SiN、AlN
、ZrN等氮化物。少量氮化物能细化钢的晶粒。氮休物多时,会使钢的塑性和韧性降低。
2、
氮属于扩大奥氏体区元素,在钢中可部分代替镍的作用,是铬锰氮不锈钢中的合金元素,,在超低碳不锈钢中,可代替碳的作用,提高钢的强度。
O:
1、
钢液中溶解的FeO
在凝固前温度降低过程中与钢液中的碳起反应,生成一氧化碳气泡,在铸件中造成气孔。
2、
钢液凝固过程中,FeO因溶解度下降而析出在钢的晶粒周界处,降低钢的性能。
『捌』 金属元素在金属中都能起到什么作用
不同的金属有不同的用处,铁,铝及其合金可以用来生产机器部件和生活中的一些工具和用品,铅可以用来阻挡X射线,金和银可以用来制造装饰品,汞可以用来制造温度计,铬和锌可以用来电镀防锈。稀土元素可以添加在合金中,以此提高合金的性能。等等
『玖』 武德合金的重要用途是什么
武德合金的重要用途是作为保险丝保护电路和电器设备,由50%铋、25%铅、12.5%锡和12.5%镉组成。
武德合金也称伍德合金,外观是灰白色的光泽金属,以金属铋为主要制成成分,熔点低,当电路中电流过大、温度过高时会熔断,起到保护电器设备的作用。
武德合金的特性如下:
1、生活中常常用到武德合金做电器保险丝,主要是利用武德合金具有金属材料的性质。武德合金熔点低于其组分金属。
2、硬度一般高于其组分金属;(特例:钠钾合金是液态的,用于原子反应堆里的导热剂)。
3、合金的导电性和导热性低于任一组分金属。利用合金的这一特性,可以制造高电阻和高热阻材料。还可制造有特殊性能的材料,如在铁中掺入15%铬和9%镍得到一种耐腐蚀的不锈钢,适用于化学工业。
4、有的抗腐蚀能力强(如不锈钢)。
『拾』 合金的用途是应用了合金的哪些性质
工业用途由于黄金具有许多独一无二的完美特性,因此在许多行业中有着独特用途.例如,它有着极高的抗腐蚀性;有良好的导电性和导热性;金的原子核具有较大的捕获中子的有效截面,对红外线的反射能力接近 100%;在金的合金中具有各种触媒性质;有良好的工艺性,极易加工成超薄金箔、微米金丝和金粉;金很容易镀到其它金属和陶器及玻璃的表面上;在一定压力下金容易被熔焊和锻焊;金可制成超导体与有机金等.具体而言,黄金的工业用途有以下几种: a. 仪器仪表制造业科学技术的发展使人们对各种仪器仪表的要求越来越高,黄金在各种精密自动化仪器上的应用也越来越广泛.工业用测量及控制设备上广泛使用以脉冲变线位移和角位移的绕线,电位计占有重要位置,而电位质量是测量控制系统工作精度的决定性因素.这类设备往往需要在各种工业环境的不同温度下长期工作,因此金或其合金就成为了精密电位计的关键材料. 在测试技术中应用的精密电位计的某些部分材料有很高的比电阻,以及小到接近于零的电阻温度系数,以致电阻在工作时是常数 (保持常数的难度非常大).金—钯—铬合金、金—钯—锰合金、金—钯—钒合金、金—钯—铁合金除能满足上述要求外,在加工的机械性能、热稳定性等各方面都达到了较好的水平. 工业上测量温度常采用热电偶和电阻温度计.热电偶是由两种不同成份的金属丝组成,由于测量点的冷端间的温度差引起能用毫伏计测量出的热电势,是基于温度的热电势的变化来测量温度的,因此对材料的热稳性要求非常严格. b. 电子工业可以说现代各项科学技术的发展都离不开电子工业,如电子信息、航空航天、仪器仪表、计算机、收音机、电视机、集成电路等都是电子工业飞跃发展的结果,而电子工业与黄金及其它贵金属的应用是密不可分的.电子元件所要求的稳定性、导电性、韧性、延展性等,黄金及其合金几乎都能达到.因此,黄金在电子工业上的用量占到了整个工业用金的70%左右,并且用量在逐年增长. c. 宇航工业金在宇航工业中的应用也在不断的发展和开拓中,其速度之快令人惊讶.金以它的抗腐性、抗热性,优良的导热、导电性.以及独特的化学性质在航空航天领域中占有着重要地位.金在宇航工业中的应用量大、范围广.从航天器、运载工具的制造到系统控制等,都离不开信息、测量、遥感、定位、计算机、摄影、仪表等各方面的器材,而其中成千上万的电子元件、仪表、特殊材料都离不开金.例如,各种航天仪表上镀金是为了防止太阳辐射. d. 润滑材料近几十年来,摩擦学的研究重点发生了明显转变,即从润滑和润滑系统转向材料科学和技术 (包括表面工程)的研究.随着现代工业技术的发展,特别是航天工业空间技术的发展,许多工况条件已经超出了润滑脂的使用极限.人们因此不得不去寻找新的润滑材料以适应更为复杂的工作环境,并为机械设备实现大型化、微型化、高速、重载和自动控制等创造有利条件. 包括中国在内的许多国家从上世纪五十年代就开始研究固体润滑材料,而金及其合金在固体润滑材科中占有着重要地位.固体润滑是用固体微粉、薄膜或复合材料代替润滑油脂,隔离相对运动的摩擦面以达到减摩和耐磨的目的.随着现代科学技术的进步,为解决高负荷、高真空、高低温、强辐射和强腐蚀等特殊工况下的机械润滑,固体润滑材料已从单一的微粉、黏结膜或单元的整体材料发展成为由多构成分组成的复合材料. 摩擦材料理论表明,表面能可以影响材料的表面流动压力.软金属黏着在基材表面上,只要有零点几个微米厚的膜就能起到润滑作用.当与对偶材料发生摩擦时,软金属膜便向对偶材料表面转移,形成转移膜使摩擦发生在软金属与转移膜之间.这种现象的原理是软金属的剪切强度低,而软金属与基材间的黏着度又大于软金属的极限剪切强度.金、银、锌等软金属的润滑作用就属于这种机理,而其中金是最佳的固体润滑软金属材料. e. 化学工业核化工和化学工业使用金的合金制作特种管、板、线等材料,以达到防腐蚀、防辐射、耐高温等要求.金—铂合金以其高耐蚀性和高强度而用于制作生产人造纤维的喷丝头;含3%钯的金合金以及含钯20%的金合金用在捕收铂的催化剂的生产上.一般认为,金是所有金属中活性最低的催化剂.金的催化活性低,是由d亚层电子全充满决定的.因此,金不能化学吸附小分子,也不能作催化剂.过去人们认为金及金的化合物催化作用的领域里是最没用的.但现在经过对金的研究、已经大大地改变了这一看法.研究结果表明,用附着在氧化铝或氧化硅载体上的高分散微粒金可对有机化学加氢的作用起到最好的催化作用,其机理是金的微粒在某些载体上金晶体变得电子不足,其性质与周期表中较前的元素相似;高分散的金微粒具有铂族元素的性质.研究证朋.在超真空下制得的金膜能有特殊的催化作用,并能使氢和氘交换.金还是碳氢化合物异构化与裂解化的催化剂,某些氧参与的反应用金也可以催化.如氧化丙烯成丙烯氢化物、氧化甲醇成甲醛系.另外,金也可以改善其它金属的催化性能.通常金能减缓催化,但能提高催化反应的专属性.如将金加到铂或铱催化剂表面上,可增强其选择性,催化异丁烷的异构化,这时能降低氢解反应进行. f. 光学应用金在光学方面有着独特性质.金能够吸收X射线,而含有其它元素的金合金能改变与波长有关的光学性质.光亮镀金作为航天器的稳控镀层,对于控制航天器内部仪器、部件的温度起着重要作用.这主要是因为金对宇宙间的红外线具有良好的散射和反射性,能够保护宇航员及设备不受宇宙射线的损害. 由于金能够改变金合金的波长,所以可改变各种金属元素的颜色.利用金的这一特性,通过某种涂层就能够达到光学的特殊要求.例如,用金来对某种玻璃做金属处理 (镀有0.13微米薄膜)所制造出的特种玻璃,可在炎热的夏季里将红外线反射回去,使室内保持凉爽.这种薄膜在反射光中呈褐色,而在入射光线中呈天蓝色.如果使电流通过这种玻璃,玻璃便会获得透明不污的性能.用金作成荧光粉 (ZnS:Cu+Zn;Au、AI)用于彩色显象管绿基色显示.这种粉末为淡黄绿色,在阴极射线或365nm紫外线激发下发黄绿色光. g. 医学应用金在医学上的应用可追溯到古代,人们一直认为服用金可以医治百病.公元13世纪,当时人们服用的“金饮料”被称为万能药.中国民间也有用金箔为小儿压惊的治疗方法;金还被广泛用作镶牙的材料. 金的一价巯基化合物 (金诺芬)主要用于治疗风湿性关节炎.硫代苹果酸金(J)“金药”在正常处治过程的治疗浓度范围内,对根治文原体(Mycoplanma)和利斯曼原虫病引起的病变有抗菌治疗效果. 金的放射性同位素在放射疗法中被广泛应用.金能以颗粒形式或胶体形式被放在照射区中.胶体金(198Au)用于放射治疗胸膜或腹膜的渗出物和膀胱癌,即用在需要不溶性放射药物均匀照射不规则的表面时;胶体金也被用于各种诊断目的,例如骨髓扫描或肝脏与肺脏造影,即将胶体金装满要研究的器官后,再用闪烁照相法进行观察;金箔用于烧伤皮肤的治疗;金蒸汽激光用于胃癌、肺癌的治疗. 在以人类健康为目的的医学生物研究中,金与其它贵金属元素因具有良好的化学稳定性、生物兼容性和力学性能,成为重要的人造器官材料和外科移植材料.用金及其它贵金属制造的微探针探索神经系统的奥秘已取得显著效果.如神经修复、心脏起搏器等都使用了金和贵金属以及它们的合金材料.